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ABSTRACT 

Among the second-order quantifiers ranging over relations satisfying a first- 
order sentence, there are four for which any other one is bi-interpretable with 
one of them: the trivial, monadic, permutational, and full second order. 

Introduction 

The problem of elementary theories of  permutation groups was discussed in 

Vazhenin and Rasin [12], McKenzie [5], Pinus [7], and essentially solved 

in Shelah [11]. It became clear that this is equivalent to the problem of the 

expressive power of the quantifier Q~,, ranging over permutations. (Of course in 

rich enough languages it is equivalent to the second-order quantifier, so the 

interesting case is of languages with no nonlogical symbols.) After examining 

[11], J. Stavi doubted the naturality of this quantifier, whereas I was convinced 

that there are no new quantifiers of this kind. At last he suggested, as explication 

of "this kind",  the family of quantifiers Q~, where ~ = r is a first-order 

sentence with the single predicate r, and (Q~,r)(a means: "There is a relation r 

satisfying ~9 such that qS".... Here we prove that up to bi-interpretability there are 

really only four such quantifiers. It seems that this justifies the preoccupation with 

Qp.We define interpretability in a way even weaker than in [11] : Q~, is interpretable 

in Q~, if there is a first-order formula 0(~, Yl "", rl ,  "-') such that for any infinite 
set A, and relation R over it, A ~ r  there are elements a l , " "  c A  and 

relations $1, ... over A, A ~ r such that A ~ (Vg) [R(g) = 0(if, a~,... ,  $1 , ' " ) ] .  

Our proofs give somewhat more than what is required. If  Qx is one of those 

four quantifiers (see Theorem 2 for details) and Q~,, Qx are bi-interpretable, then 
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there is a 0(2,37, r~,-.- ,r ,)  interpreting Qx by Q~ with bounded n (that is the 

bound on n is absolute). No attempt has been made to determine a minimal 

bound, but notice that if Q~, QM are bi-interpretable (Q M--the monadic quantifier) 

then by Claim 5H, some O(x, y, r) interprets Qu by Q~,. 

There are several ways in which we can try to generalize our results and most 

directions were not investigated. 

We can quantify over a pair of relations, e.g. two operations defining a field; 

but this can be reduced to the previous case. 

We can permit finite models, but then we can find a quantifier very strong for 

models with an even number of elements, and trivial for models with an odd 

number of elements. 

We can have quantifiers ranging over pseudo-elementary classes. That is, 

(Q~r,s~r) "", means "there is an r such that for some s, ~(r,s) holds, and r 

satisfies...". In this case, our proofs give similar classification, but the equivalence 

classes of QM, QP are divided into infinitely many equivalence classes. It is not so 

difficult to give a complete picture. If  we want to find which cardinals can be 

characterized by a sentence with such quantifiers but with no nonlogical symbol, 

we are stuck by the independence of, e.g., the function 2 ~ .  

Another direction is multi-sorted models. Here the classification depends on 

n-cardinal theorems (see e.g. [1]) but modulo these, it seems possible to give a 

classification. 

Still another direction is to replace first-order logic by the infinitary logic 

L ..... (or Lx.,o ). Here it is reasonable to ignore models of cardinality < "1,o 1. In 

this case we have a quantifier Q~r ranging over all two-place relations ofcardinality 

< 2, where there is ~ ~ Lo, l,o~ which has a model of cardinality I~ iff/z < 2. We also 

have the quantifiers ranging over equivalence relations with < 2 equivalence 

classes or with equivalence classes of power <= tt < 2 for some/~, where 2 satisfies 

the condition mentioned for Q~H. It is easy to define when a quantifier Qo is 

interpretable by a set of quantifiers and hence when a quantifier and set of  quanti- 

tiers, or two such sets, are bi-interpretable. 

CONJECTURE. Any Qg, is bi-interpretable with a finite set consisting of quanti- 

6ers mentioned above. 

The following conjecture seems to imply all others. Let A be a fixed infinite set. 

For each m-place relation R over A define "(QRr) . . . ' '  to mean "there is a relation 

r over A, (A,R)~-(A,r) such that - - -"  
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CONJECTURE. Any quantifier (QRr) is bi-interpretable with a finite set o f  

quantifiers {(QE,r): i < n} where Ei is an equivalence relation over A. 

NOTATION. Let r,s, t denote predicates (=  variables over relations); R, S, T 

(the corresponding) relations; x, y, z individual variables; and a, b, c, d elements. 

A bar on any one of them means that it is a finite sequence of this sort. Let ~b, $, 0, X 

denote formulae, first-order if not stated otherwise, q~ = ~b(xl, ..., r l ,"-)  means 

that xD"-  include all the free variables of q~, and r l , - "  include all the predicates in 

q~. L denotes first-order language (always with equality). Let $ = $(r) always, r 

have n($) places, and Lv, = L(Qg,) be language L with the added second-order 

quantifier (Q,r). . .  which means "there is an r which satisfies $ such tha t . . . "  

Let Rg,(A)= {R: R an n(~O)-ary relation over A, A F $[R]} (~ denotes satis- 

faction). Let (Q~?) mean (Q~rl) '"  (Qc, r,), where ? = ( r l , . . . ,  r,>. We shall write 

6 c A  instead of d = (a l, ...,a,>, a i eA .  For any 6, l(d) is its length, and d i or at 

its i ' th element, so d = (a l ,  ...,a~(n)>. 

Let i,j, k, l, m, n range over natural numbers, i,j, ~, fl, ?, 6 over ordinals, and 

2,p, tc over cardinals. 

A sequence d is without repetitions if i # j implies d~ ~ dj, and a, b are disjoint 

if di r b~ for any i,j. Let Eq~(A) [Eq*(A)] be the set of equivalence relations over 

A, with each equivalence class having < 2[2] elements. Let e denote an equivalence 

relation. 

DEFINITION 1. Q~, is interpretable in Q~ if there is a formula q5(~,37, ~), I(~) 

= n(~i) such that for any infinite A and Ri e Rg,~(A) there are d e  A, 1~ e R~,~(A) 

such that 

A ~ (V#) [R,(#) -= ~b(#,6,/~)]. 

DEFINITION 2. Q~, and Q~2 are equivalent if each is interpretable in the other. 

LEMMA 1. I f  Qr is interpretable in Q~2, then there is a recursive function F 

f rom the formulae of  any language Lv, ~ into those of  L~2 such that for  any 

infinite model M and sentence O e Lr (not necessarily first-order) 

M ~0 i f f M  ~F(O). 

PROOF. We define F(O) for formulae O, by induction on O. The only nontrivial 

case is 0 -- (Qc,,r)x. Without loss of generality no variable occurs both in 0 and 

in the interpreting formula ~ (otherwise change names). Replace in F(Z) and in 



Vol. 15, 1 9 7 3  SECOND-ORDER QUANTIFIERS 285 

~b 1 every occurrence of  r(~) by ~(~,37, ~), call the results X*, ~b~ and let F(O) = 

(3 :) (O~/)(z* A ~,*). 
Our main result is 

THEOREM 2. Each Q~ is equivalent to exactly one of  the following quantifiers: 

A) Q1--the trivial quantifier, i.e., Q~,, r = r, n ( r  so Lr is just first- 

order logic 

B) QM--the monadic second-order quantifier, i.e., Qc, M, ~M =(Vx) [r(x) - r(x)], 

n(~bM) = 1, 

C) Qp--the permutational second-order quantifier, ranging over permutations 

of the universe of order two, i.e. Qv, p, 

t~l, = (Vx ) I f ( f  (x)) = x] 

(of course we can quantify over functions instead of relations; equivalently we 

can quantify over Eq~(A)) 

D) QH--the (full) second-order quantifier i.e., Q~H, ~II=(VxY) [r(x,y) 

=- r(x,y)], n(~H) = 2. 

The proof is broken into a series of lemmas and claims. 

LEMMA 3. Q1 can be interpreted in QM, Q~ can be interpreted in Qp, and 

Q~, can be interpreted in QH. However, none of the converses holds. (In fact, in 

the negative parts, also the conclusion of Lemma 1 fails.) 

PROOF. The positive statements are immediate. As for the negative statements, 

let L be a language with no predicates or function symbols (except equality, of 

course), and Lo, d be the language of models of order. 

We know that in Lo,d(Q~ ) there is no formula (with parameters) defining the 

class of well-ordering but that there is one in Lo,d(Q~ ). Hence QM cannot be 

interpreted by QI. 

We know that for every sentence ~b ~ L(QM), either every infinite model satisfies 

it or no infinite model satisfies it. As in McKenzie [5] (or Pinus [7], Shelah [11]) 

this is not true for L(Qp), Qp cannot be interpreted by QM. 

By Shelah [11], if a sentence c~L(Qp) has a model of cardinality > N a ~  

(I) = (2~~ +) then ~b has models of arbitrarily high power. Of  course L(QH) does 

not satisfy this, hence QH is not interpretable by Qp. 

LEMMA 4. I f  Qr is not interpretable by Qt then QM is interpretable by Q~. 

CLAIM4A. Q~t is interpretable by Qr i f  there is a formula ~p = q~(x,)7, f), 



286 S. SHELAH Israel J. Math., 

and a set A, de A, R e Ro(A) such that c~(y,d,R) divides A into two infinite sets, 

that is ]q~(A,d,/~)[>No, [ ~ b ( A , d , / ~ ) l > N 0 ,  where qS(A,d,R)=(bEA: 

A ~ ~b[b, d,_R]}. 

PROOF OF CLAIM 4A. Assuming the existence of such qS, by the compactness 

and Lowenheim-Skolem theorems, for every infinite B there are d~ B, _R e Ro(B) 

such that IB I = = By applying a permutation of B 

for every B 1 ~_B, IB~I = I B -  B1] = IBI, there are deA ,  R~Ro(B ) such that 

q~(B, d,R) = B 1. Now for every C ~ B there are B~ _~ B i = 1, . . . ,4 such that 

IB,[ = I B -  B~] = IBIanOC=(B1 ~B2) U(B 3 rqB4). Let 

0 = 0(X, .~:g, F*)= [(~(X, f f l  /;1)A (~(x,y2,r2)] V [r 3,/;3] A ~)(x,y 4, 1=4)]. 

Then as the d* range over B, and the/~* range over Ro(B), O(B, d*,R*) ranges 

over the subsets of B. 

DEFINITION 3. 

A) The sequences d l, d 2 are similar over B if d i= <...,d~,...>i<k and (i) 

l = b i f f  2 b, a jl = a~ iff a f  = a~; (ii) for b e B, aj aj. = 

B) The sequences d I, d 2 are similar over/5 iff they are similar over {..., bi,.-.}. 

CLAIM 4B. I f  QM is not interpretable by Q~ then for every formula ~(~,.~, ~) 

there is a formula O(z,~,f) and n < o9 such that for any A, [JeA, R~R~(A) 

(i) A ~(3<="z)O(z,[~,R) that is ] 0(A,b,/~)] < n 

(ii) / f  d l, d 2 are similar over 

{"', [h,"" } k30(A, D R) then A ~ ~(a- 1, [~, ~) =_ ~(d 2, b, R). 

REMARK. In the induction step, only the validity of our claim for the previous 

case is needed. 

PROOF OF CLAIM 4B. We shall prove it by induction on I(.~). 

F or I($) = 1 by Claim 4A (and compactness) for some m, 

Om = [(~-~ x)~(X,~, 0 - ~  ~(z,~, 0 ]  ^ [(~-~x) 7 ~ (X,~, 0 -~ ~ ~ (z, ~, 0] 

satisfies our demands. 

Suppose we have proved it for I(2)<= l, and we shall prove it for the case 

1(2)=l+1.  Choose any A, beA ,  keRo(A)  and s  21 

= <xl,..',xz>, .~1= <xz+l,)71,...>. For ~b(21,ffi,i) we have proved the claim, 

and let O(z,y~,i), n be as mentioned there. Now for any a e A  let Ex(a 

= O(A,a,b,l~) - {a, ..-,b,, ...}. Thus [Ex(a)] < n always. 
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Let us show that k),~AEX(a ) is finite. If  not, define by induction on i < co, 

a i s A  - {aj: j < i}, ci such that Ex(a~) ~ Uj< iEx(aj),  and cteEx(al)  - u j<  t 

Ex (a j). By Ramsey's theorem we can assume (by replacing the sequence of at's 

and c~'s by a subsequence) that the truth value of c~ ~ Ex(aj) depends only on 

whether i = j,  i < j or i > j. Clearly ci e Ex(at), and for j > i, j < co, cj (s Ex(ai). 

Since ]Ex(aj)[ < n, clearly there is an i < n + 2 such that cir Ex(a,+2). Hence 

ct eEx(a j )  iff i = j .  Similarly ci = ej iff i = j ;  and at # ej. As the ai's and c~s are 

distinct, we can assume that none of them appear in b. L e t f b e  a permutation of A 

which interchanges c3t+1 with c3t+2, and takes the other elements of A to them- 

selves. Le t / ]*  be the image of /~  by f (so f is an isomorphism from (A,/~) onto 

(A,/~*)). Clearly A ~ (Vx) [O(x, ai, b, R) = (x, ai, b,/]*)] i f f f  takes the set O(A, at, 

b,/~) onto itself iff i is divisible by three; thus 

X(Y,/~,/~,/~*) = (Vx) [O(x, y, b, R) = O(x, y, b,/]*)] 

satisfies the conditions mentioned in Claim 4A, a contradiction. Hence C = u ,  ~a 

Ex(a) is finite. Let C = {q,  ..., cj}, d = @1," ' , ca ) .  

DEFINITION 4. Let us call )~(s complete if it is a conjunction such that for every 

i , j ,  z t = zj or z t # zj is a conjunct (and all the conjuncts are of this form). 

Let Zt(~ ~, x, .9, $) i = 1,---, k be a list of all complete formulae in the displayed 

variables. By definition of Ex for every i, and a e A 

(i) A ~ (V~ ~) [Zt(2 ~, a, b, d) ~ q5(2 x, a, b,/~)] 
o r  

(ii) A ~ (V:~ ~) IX,(2 ~, a, b, d) ~ ~ q~(2 ~, a, b,/~)]. 

For each a let I(a) be the set of i's for which (i) holds. 

By Claim 4A, except for finitely many a's, all I(a) are equal (to I). Let C ~ be 

the set of exceptional a's. It is easy to check that: 

(*) if d~,d 2 are similar over C 2 =  { ' ' ' ,h i , ' ' "  } ~.)C ~.)C 1, then A ~ q~[d~,b,/~] 

-= qS[d 2, b,/~] ; C 2 is finite. 

Without loss of generality we cannot replace C 2 by a set of smallest cardinality 

satisfying (*). Let nl = [C 2 I, and let 01 = 01(z,.9, f) say that there are z2, ..., z,,, 

such that if 2 ' ,22  are similar over {z, z2 , . . . , z , , , . . . , .9~, . . . } ,  then (@rcz,~,f) 
_ ~ ( ~ 2 , . 9 ,  ~). 

SUBCLAIM 4C. 01(A , b ,~ )  is f inite.  

PROOF OF SUBCLAIM 4C. If  not, there are distinct C z , i<co satisfying (*), 

Ic I=.a 
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NOW w.l.o.g, thereis a C*, [C*[ < nl, such that for any i < j <  :o, Ci : •C?= C*; 

this follows by ErdSs and Rado [2-[, but we can also prove it directly. Let 
C 2 c 2 c 2 = ( /,1, "", i,,t}, and by Ramsey's theorem 1-9] there is an infinite I _ co, such 

that for 1 < l, k < nl, i < j ~ I, the truth value of c 2 2 = = i,t = eS.k does not depend on the 

particular i,j. Without loss of generality I = o~. Let 

c *  = (co  k: CoL = c 2,,k, _< k < n , ) . _  

By definition of I, C* _= C~ for every/.As Co~  C[, IC*] < n~. L e t / <  j < co. 

Then clearly C* _ C 2 n C2; if equality does not hold let ce  Ci2n C 2 -  C*. Thus 
C m_ C 2 = C2 . 2 2 2 ,k ja,  since i < j ,  this implies Co.k ---~ C2,1, C?,k = C22,1, Co,k2 = Cja. Hence 
C 20,k 2 -~ C 2 2 = C~.k j,Z = C, CO,k~ C*, and c~ C*, a contradiction. So it is proved that 

w.l.o.g, there is such a C*, but if d 1, t2 2 are similar over C* then they are similar 

over all C 2 except finitely many, and this contradicts the definition of n~. Thus 

Subclaim 4C is proved. 

CONTINUATION OF THE PROOF OF CLAIM 4B. Let I Ol(A, b, R) [ = n 2. 

So 01(z , )7, f ) ,  n 2 satisfy the demands in Claim 4B except that they depend on 

A,b,/] .  By the compactness theorem there are Oi(z, )7, ?), n i i =  1,. . . ,k(<og) 

such that for any A, b e A ,  ReRq,(A) there is an i such that 0 i, n ~ satisfy the 

demands of the claim. Let 0* = O*(z, 9, f) = vi[(3 -~"~u) Oi(u,)7, f) A Or(z,)7, f)]. 

Clearly this is the right one, so Claim 4B is proved. 

PROOF OF LEMMA 4. Assume QM is not interpretable by Qr Use Claim 4B 

for r r ) =  r(:~), and let 0, n be the 0, n whose existence is proved there. Let 

X~(2,~) (l(~)= n) i =  1 , . . . ,k  be the complete formulae mentioned in the proof 

of Claim 4B. Let Ix , ' " , I2 ,  be the subsets of {1,...,k}. 

Let 

r = A [Y2y=Y2y+I -~ V Z,( 2 ,z)] .  
j i~ l j  

For an infinite A, for every R ~ Rr let (e l , ' " ,  e,) D_ O(A, R). 

Let I = {i: (Sg) 1-~(~(g,e) A r(g)]}, j be such that I = Ij. Define b such that 

b2p = b2p+l iff p =j .  Then 

A ~ r b, e) - r(~Z), 

a contradiction. Thus Lemma 4 is proved. 

LEMMA 5. I f  Qr is not interpretable by QM then Qe is interpretable by Qr 
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PROOF. Clearly Qg, is a fort!ori not interpretable by Qt, hence by Lemma 4, 

QM is interpretable by Qg,. 

CLAIM 5A. Op is interpretable by Q~ if there is a formula r ~), a set 

A, 8eA,  _R~R~,(A), B~_A such that (p(x,y,8,R) defines on B an equivalence 

relation with infinitely many equivalence classes with > 2 elements. 

PROOF OF CLAIM 5A. The proof is similar to that of Claim 4A. By replacing 

B by a subset, we may assume that each equivalence class has exactly two elements 

and that A - B is infinite. Now for every infinite A, by the compactness and the 

Lowenheim-Skolem theorems, there are B~_A, d~A,  /~Rg,(A),  such that 

IB[ = ]A - B I = [A I, and r on B a relation e Eq*(B). We can 

easily find D ~ A, Se  R~(A) such that r b, ~) defines on A - B an equivalence 

relation from E q * ( A -  B). Also there is a formula r T) geA,  T~R~(A), 

which defines B. So 

O(x, y, a, b, g, R, S, T) = [r g, T) - ~b*(y, g, T)] 

^ [r ~) ~ r ~,~)] ^ [ 7  r T)-~ r b,S)] 

defines a relation from Eq*(A). 

Clearly for every e e Eq~(A) there are a ,  b', g' e A, - '  - '  -' R ,  S ,  T' e R~,(A), such that 

A ~ (Yxy) [O(x, y, d,...) =- xey]. 

Since we can interpret QM in Qr by a small change in 0 we can have the same 

for e e Eqa(A). This proves the claim. 

DEFINITION 5. W e  call r = r  z, . . . ,x, ,r)  atomic if r = [xi = x j] or r 

= r(xi~,.., xitq,~). 

DEFINITION 6. For  every A, B ~ A, R e Rr define the equivalence relation 

e = e(R, B, A) over B by bee iff b, c ~ B, and for every atomic r  , x,,) and 

a 2 , ' "  , a, ~ A - B, a ~ q~[b, a 2 , . "  , R] = q~[c, a 2 , . . . ,  R]. 

CLAIM 5B. e(R,B,A) is defned by a formula in A (with R and B as parameters). 

PROOF. Immediate. 

CLAIM 5C. I f  Qp is not interpretable by Qr then for every A, B ~ A, R ~ Rr 

e(R,B,A) has fn i te ly  many equivalence classes. 

PROOF. Suppose e(R,B,A) has infinitely many equivalenceclasses. ByClaim 5A, 

only finitely many of them have > 2 elements. But if we replace B by a smaller 

set, e(R, B, A) becomes finer (i.e., the equivalence classes become smaller). Hence 
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w.l.o.g, each equivalence class of e(R, B,A)  has one element, and of course B is 

infinite. 

Let f be a permutation of order two of A, such that f ( a )  = a ~ a q~ B. Define 

R 1 = {(al ,  ... ) :  aa, ... ~A, ( f ( a l ) ,  ... ) sR) .  

Let 

el = {(c, b) :  b, c ~ B, for every atomic ~b(x,.9, r) and 

every d ~ ( A -  B); A ~ ~bl-c,d,R] --q~[b,&R~] 

A ~(~[b,d,R] - ~b[c,&R1]). 

It is easy to see that c = f (b ) ,  c, b ~ B implies (c, b) ~ e 1. It is easy to check that 

(c, b) ~ e 1 implies ( e , f ( b ) )  ~ e(R1,B,A ) but this implies c = f (b ) .  

Hence [ ( x , y ) ~  eli v x = y defines an equivalence relation of  Eq*(B), and 

clearly it is definable by a formula. By Claim 5A this leads to a contradiction, 

hence 5C is proved. 

CLAIM 5D. I f  Qp is not interpretable by Qr then there is a formula (a(x,y, r) 

such that for  every A, R e R~,(A). 

(i) c~(x,y,R) defines an equivalence relation with finitely many equivalence 

classes. 

(ii) A ~ dp[a, b, R] implies that there is a finite B such that (a,  b)  ~ e(R, B, A). 

PROOF. Define for A, R ~ R~,(A) n < ~o the relation 

e,(R, A) = {(c, b): c, b ~ A, there is B ~ A, ]B[ =<_ n 

such that (e, b )  ~ e(R, B, A)}. 

Define q~,(x, y, r) such that A ~ ~,[ c, b, R] iff ( c, b)  E e,( R, A), R ~ Re(A). Note 

tfiat q~,+ l(x, y, r) ~ ~b,(x, y, r) always. 

Clearly e*(R ,A)= U,<,~e,(R,A) is an equivalence relation over A. Moreover 

it has only finitely many equivalence classes. Otherwise choose nonequivalent a i 

1 < i < co. By Claim 5C and the compactness theorem, there is n o < co such that 

e(R~,B,A) always has =< no equivalence classes, for B ~ A ,  RI~R~,(A). Let 

B = {at: 1 _< i _< n o + 1}. Then e(R,B,A)  has n o + 1 equivalence classes (by the 

choice of  the ai's and the definition of e*). We prove in fact that e*(R, A) has < n o 

equivalence classes for any R ~ R~,(A). Hence in 

F = {•(r)} U {--n dp,(xi,xj, r): n < ~o, 1 < i < j  < n o + 1} 

there is a contradiction. 
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Thus  for  some nl < co there is a contradic t ion in 

{O(r)} U {n(o,(xi ,xj ,  r): n < nl, 1 < i < j < n o + 1}. 

The  closure o f  r  y, r) to an equivalence relat ion is 

~b(x,y,  r )  = " f O z l , ' " , z m )  4 ) . , ( z t , z ~ + l , r )  ^ Zo = x ^ Zm = y 
' 1 

where m = 3no is sufficient. This  is because for  every A , R  e Ro(A ) there is a 

max ima l  set {a~: 1 < i < io} such that  i < j  < io implies A ~ 7 0 , l ( a , , a j ,  R); 

hence i o __< no by the definit ion of  nl. By the maximal i ty  of  the set, for  every a e A 

for  at least one i A ~ 4),, (a, at,R). N o w  if b, c are equivalent  in the closure of  

e, , (R,A) then there are dl, . . . ,dm, dl = b ,  d , , = c  and ( d t , d i + l ) e e , , ( R , A ) .  

Choose such d,'s with min ima l  m;  we should show m < 3n o. Fo r  this it suffices 

to prove  there are no four  dt f rom one q5,1 (A, at, R). Let 1 < il < i2 < i3 < i4 < m, 

dh, "", dr4 e 0,1 (A, a j, R). Then (dil, a j>, <aj, di, > ~ en, (R, A), hence also dl, ..., d h, 

dj, d~4...,dm is a suitable sequence, and it has smaller  length, a contradict ion.  ' 

Since e*(R,A) is an equivalence relat ion,  it refines the closure of  e, , (R,A).  

Hence R e Ro(A), A ~ (o[b,c,R] implies that  there is a finite B ~ A such tha t  

(b,  c> ~ e(R, B, A). 

CLAIM 5E. In Claim 5D we conclude also that there are O(z,x,y,r) ,  n 2 < co 

such that for  any A, R e Ro(A ), b, c e A, 

(i) A ~(Vxy)(3~":z) O(z , x , y , e )  

(ii) A ~ (Vxyz) [O(z, x, y, R) --* z # x ^ z # y] 

(iii) A ~ c~[b, e, R] implies <b, c> ~ e(R, B, A) where B = O(A, b, c, R) U {b, c} 

(iv) A ~ -n ~b(b, c, R] implies A ~ (Vz) "70(z, b, c, R). 

PROOF. By the compactness  theorem and Cla im 5D, there is an n3 < co such 

that  R~R~,(A), A ~ c~[b,c,R] implies  (b,c>~e,~(R,A).  

Let O(z, x, y, r) say "qS(x, y, r), z # x, z # y and for  some n =< n a there are no 

z l , ' " ,  z,_ 1 such that  <x, y> e e(r, {x, y, z l , ' " ,  z,_ 1}), but  there are z l , - . ' ,  z,  such 

that  <x, y> e e(r, {x, y, z l , . . . ,  z,}, and z = z l " .  As in the p r o o f  of  Cla im 4C for  

all R ~ R~,(A), b, c ~ A, O(A, b, c, R) is finite, and so clearly the claim holds. 

CLAIM 5F .  In the conclusion of  Claim 5E we can add 

(v) there is n 4 < co such that for  R ~ Ro(A ) 

A ~(~_,4 z ) (3xy)O(z ,x ,y ,R) .  
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For this it suffices to prove Claim 5G (by applying Claim 5G twice we get 

Claim 5F). 

CLAIM 5G. I f  Q.e is not interpretable by Q,, and for  any R~R , (A ) ,  A ~O/x) 

(Vy) (3 ~-m'z) O(z, y, "2, R) and O(z, y, Yc, r ) ~  z ~ y, then for  some m2 < co, for  every 

R ~ Rg,(A) 

A k (V2) (]--<m'z) (3y) O(z, y,2,  R). 

PROOf. If not, by the compactness theorem, there are A, R e R~,(A), d e A 

such that 

(1) A ~(Vy) (3~"'z) O(z,y,a,R) 

(2) for every finite B _~ A there are b e A, c ~ A - B, A k O(c, b, d, R). 

Define by induction on n, b, E A, c, ~ A - {ci: i < n} such that A ~ O[c,, b,, d, R]. 

By Ramsey's theorem [9] we can assume that the truth value of A k O[c,,, 

b , ,d ,R] ,  b , =  cm depends only on whether m =n ,  m < n or m > n. Since, 

A k(3~-m'z)O(z,b,,d,l~) clearly A kO[cm, b , ,d ,R  ] it. m = n  (reccal that the 

c,'s are distinct); therefore, b,'s are distinct. Also bn~ Cm because (1) if n = m, 

this holds by the assumption on O, (2) if n < m, then cl = bo = c2, a contradiction, 

and (3) if n > m, cl = ba  = c2, a contradiction. 

Also w.l.o.g, b n ~ di, e, v~ di, k -10[cn, era, d, R] ^ "-10(bn, b,,, d, R] for n ~ m 

(otherwise omit finitely many <ci, bi>'s). Let 

B = {bn: n < co} ~3 {cn: n < co}. 

Now the formula y = z v O(z, y, d, R) v O(y, z, d, R] defines on B a relation of  

Eq*(B), a contradiction. Thus Claim 5G, and hence Claim 5F are proved. 

CLAIM 5H. I f  Qp is not interpretable by Q~,, then for  every A, R ~ Rc,(A), 

e+(R, A) = {<a, b>: a, b ~ A, the permutation f ( f (a)  = b, f (b )  -- a, f (c)  = c for  

c ~ a,b) is an automorphism o f (A ,R)}  is an equivalence relation with finitely 

many equivalence classes. 

PROOF. Define by induction on n, 1 < n < co, formulae 

r y, r), On(z, r) such that 

1) for any R eR~,(A), dpn(x,y,R ) is an equivalence relation with < k l (n )< co 

equivalence classes 

2) for any R e R~(A), [ O,(A, R)[ < k2(n) < ~o 

3) for any R e R~(A), a, b e A, A k ck,[a, b, R] implies <a, b} e e(R, (B n -  B n_ 1) 

U {a, b), A) 
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4) for any 1 < n < m < o9, O~(A, R) ~_ Ore(A, R) where Bo = ~ ,  B, = O,(A, R). 

For n = 1 the existence of ~1, 0x follows from Claims 5D, 5E, and 5F and the 

compactness theorem. (Take ~b I = q~, 01 =(~xy)O(z,x,y,r).)  

Suppose qS, 0, are defined. Let cl,...  , Ck[k = Y~= 1 k2(l)] be individual constants, 

and replace ~(r) by 

O(r) A(Vz) O,(z , r ) -  V z = c l  �9 
~ = 1  1 = 1  

Now repeat the proof of Claims 5D, E and F (the change from r to r and c's is 

technical; just add more atomic formulae). Hence we get ~b,+ 1 0.+l as we got 

q51 01. Clearly (1), (2) and (3) hold. 

Now for any R e R~,(A) define 

e' = {(a, b): (Vn < og)A ~ q~,,Ea, b, R]}. 

Clearly e' is an equivalence relation with < 2 ~~ equivalence classes. 

It is also clear that e+(R, A) is an equivalence relation. We shall now show that 

if  a e'b, a ,br  U,B, and their e'-equivalence class is infinite, then a e+(R,A)b. 

This implies that e+(R, A) has < 2 ~~ equivalence classes, hence by the compact- 

ness theorem this is sufficient. For proving that the permutation interchanging 

a, b is an automorphism, it suffices to prove that if q~(x, y, zl, "-', zm; r) is atomic, 

c l , ' " ,  cm e A - {a, b}, ~ qS(a, b, cl , . - ' ,  cm, r) = gb(b, a, cD-.., cm). We can choose n 

such that (B,+ l -  B , )n{c l , . . . , cm,  a,b } = ~ and a I such that a 1 e'a, a I r 1 

t3 {cl , '" ,  c,,, a, b}. By (3) 

~[a, b, cl, . . . ,  cm, r] =- ~[al,  b, cl,...,cm, r], 

~[al,  b, cl,...,cm, r] - ~b[al,a,cl,...,cm, r] and also 

q~[al, a, cl,'" ", cm, r] - ~[b, a, cl, . . . ,  cm, r]. Combining we get the result. 

PROOF OF LEMMA 5. From Claim 5H and the compactness theorem, it follows 

that if Qp is not interpretable by Q~ then there is some n s < o9 such that for any 

A, R ~ R~(A), e+(R, A) has < n 5 equivalence classes. Let us show that this implies 

that Qr is interpretable by QM. This implies that for every A , R  e Rc,(A), there 

are sets B 1, ...,B,~ (the e+(R,A) equivalence classes) such that the truth value of 

R[a 1, ..., a,~r (aie A) depends only on the truth values of a i = a j, a, ~ Bk; hence 

there is a (quantifier free) formula ~b such that 

A b (V~) [R(~) = qS(~, B 1 , . . .  , B,.)]. 
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From the construction, the number of possible ~b's is finite, and let them be 

q51,.-. , q5,6. Let 

q~* = A [Yo = Y, ~ qS, (2, ,X1,.- .  ,X.,)] 
i = l  

(Xi-variables over sets). 

Hence for every infinite A, and R ~ Rq,(A) there are Co, "", c,6, B1,-",  B,~ such 

that 

A b (V2) [R(2) = qS*(.~, g, BD...)].  

Thus the proof of Lemma 5 is complete. 

LEMMA 6. If Q~, is not interpretable by Qe then QII is interpretable by Qo. 

PROOF. As Qo is not interpretable by Qe, it is obviously not interpretable by 

QM; hence by Lemma 5, Qe is interpretable by Qr 

DEFINITION 7. 

1) A family of sequences of length n is pseudofinite if there is a finite set such 

that in every sequence of the family appears an element from the finite set. 

2) A family F of sequences of length n from a model (A,/~) is q~(~, )7, i)-minimal 

in (A,R) (l(ff) = n) if it is not pseudo-finite, but for any 6EA, {b~F :  A 

q~[b, 6,/~]} is pseudo-finite or {b ~ F: A ~ --7 dp(D, d,/~)} is pseudo finite. 

3) ~b(x, 6, _R) is algebraic (in (A,/2)) if I ~(A, 6, _R) I < No. 

4) q~(s 6,/~) is pseudo-algebraic (in 

finite. 

5) a(6) is (pseudo-) algebraic over 

q~(x, b,/]) (qS(ff, b,/2)), A ~ qS[a, b,/~] 

(A,/~)) if {b 6 A: A ~ q~ [b, d,/2]} is pseudo- 

B in (A,/~) if for some (pseudo-)algebraic 

(A ~ ~b[6, b,/~]) and b E B. 

6) The type of b over B in (A,/~) is {qS{:?,d,/~): g e B ,  A ~ qS[b,g,/~]}. 

CLAIM 6A. Q11 is interpretable by Qo if there are c~(2,y,~, ?) [l(:?) = I()7) = n], 

A, R~Ro(A), ~eA,  B ~ A  such that qS(s defines over "B = {b: b e B ,  

l (b)=  n} an equivalence relation, with infinitely many non-pseudo-finite 

equivalence classes. 

PROOF. For n = 1, we can show as in Claim 4A, Claim 5A that we can interpret 

the quantifier over equivalence relations. By Rabin [8], it then follows that we 

can interpret Qll. 
Now we shall reduce the case n > 1 to n = 1, using the interpretability of Qp 

by Q~. 
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Choose by induction on max {i,j} sequences d i i i ,  j < 09 such that 

1) d~'Je B 

2) A ~O[d'~ -,,k a ,e , /~]  i f f i = l  

3) for ( i , j )  r (l,k>, di'~ dZ'kare disjoint, and d '~ e are disjoint. 

For m -- 1, n, define fm as the permutation of A (of order two) interchanging 

d] 'j with d~J for i , j  < ~o, and taking any other b e A to itself. 

Let B* = {d]J: i , j  < co}. 

Now the formula 

qS*(x, y, ~,/~,f~,...,f~) = qS(fi(x), fz(X), ..-,f,(x), fl(Y), fa(Y), "",f,(Y), c,/~) 

defines on B* an equivalence relation with infinitely many infinite equivalence 

classes. This proves Claim 6A. 

CLAIM 6B. QH is interpretable by Qo i f  there are 0(2,9,  r), A, R s Ro(A) and 

d"~A(n<r such that for  every n<o9, O, = /~  . . . .  d?(~,dm, R) ^ -1  ~(2, d",R) is 

not pseudo-algebraic. 

PROOF. By the compactness theorem we can assume that each formula 0, is 

satisfied by > 2 ~~ pairwise disjoint sequences. Let 

B = {dT: m < co, 1 -< iN l(d")}, e = {(b,O): b, e e A ,  l(b) = l(g) 

= l(2), (Vd~B) A ~c~[D,d,R] = ~b[~,d,R]}. 

Then e is an equivalence relation over ~(am)A. The set of sequences which satisfies 

0, is split into at most 2 e~ equivalence classes (as [ B I = No), so at least one of them 

contains > 2 ~~ pairwise disjoint sequences, hence is not pseudo-finite. Clearly for 

n r m, a sequence satisfying 0, and a sequence satisfying Om are not equivalent. 

Thus we get our result by Claim 6A. 

CLAIM 6C. I f  Qi1 is not interpretable by Qo then for  every c~(2,~, r) there are 

m(qS) < ~o, and Z4a(2,~,r) i =  1,..., m((a) such that 

for  any A, R ~ Ro(A ) there is ~ A which satisfies 

1) A } (g2) VT(=~)Z~,,,(~,a,R) 

2) A ~ 7 (~2) D(~,i(2, (, R) ^ Zo,j(2,g,g)]for i r  

3) the sets Si -- {d: A ~ Zo,i[d, ~, R]} are 0(2, fi, r)-minimal; moreover for  some 

.fixed m~(O)<o) , for  no S i and no DeA,  do both { d e S i : A  ~qb[d,b,g]} and 
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{a~Sz: A ~ --1 4~[a,b,R]} contain m~(q~) pairwise disjoint sequences (we call 
this property "(~b,m~((~))-minimality"). 

PROOF. By Claim 6B and the compactness theorem, there is an m~(~b) < o9 such 

that we cannot find A, R ~ R~(A), sequences d~e A for n < m ~(qS), and a formula 

~b*~{~b(~,)7,r), ~ qS(~,jT, r)} such that for each n < rnl(~b), Am<,[qb*(~,d~,R) 

n -1 ~b*(ff, d", R)] is satisfied by > mx(q6) pairwise disjoint sequences. 

Now let t/ denote a sequence of ones and zeros. Define by induction on l, 

sequences dr < l and formulae Z~ = Z,(x, b,, R). 

For l = 0, t / the empty sequence, Z, = (Vx)(x = x). 

Suppose we have made the definitions for l; let us do so for l+  1. Let l(t/)= I. If  

there is an d, e A such that both Z,( g. b, R) ^ c~( ~. d,. R ). ~,( ~. b ,. R) ^ --1 c~( ~. d,.R ) 

are satisfied by ___ m~(q~) pairwise disjoint sequences, then choose such d~; 

otherwise choose d, arbitrarily. 

Then if l(~/) = l + 1. define Z~(~. b~.R) as follows:/1 = (i(1).-... i(l + 1)); then 

if i(l + 1) = O. 

Z,(~. b,.R) = .~<~<i) ..... ~)> (:L b<~) ..... t<o>.R) ̂  ~(.~. a<~<~) ..... ~<z)>.R) 

and if i(l + 1) = 1, it is the same with --1 ~b instead of ~b. 

By the definition of ml(qS), if, e.g., l(t/)=2ml(~b ) + 2 ,  then X~(Y,,b,,R) is 

(~b, ml(~b))-minimal. Clearly the Z~(ff, b,, R), l(t/) = 2ml(~b ) + 2 form a partition; 

and the choice of X~($, z, r) does not depend on the particular model. Thus Claim 

6C is proved. 

CLAIM 6D. Suppose QI1 is not interpretable by Qg,. I f  A is an infinite 

ReRr B ~_ A, d , [ ~ A ,  and d is pseudo-algebraic over B u { . . . , b i , . . . )  but 

not over B, then [~ is pseudo-algebraic over B U {..., di, '"}. 

PROOF. Suppose the conclusion fails. There are 6e  B, and ~b(s 37, ~, r) such that 

A ~ q~[d, b, 6, R], and ~b($, b, 6, R) is pseudo-algebraic. Say there do not exist m 

pairwise disjoint sequences in ~b[A, b, 6, R]. Let 0(~,37, ~, R) say that q~($, 37, ~, R) 

and there do not exist m pairwise disjoint sequences in (o(A,37,~,R). Since A 

0[a, b, 6, R], 0[d, 37, 6, R] is not pseudo-algebraic. For each n < co, let Xn(~, ~, R) 

say that there are n disjoint sequences d such that 0(~, d, ~, R) is satisfied. Thus 

A ~ Zn[d, 6, R] for all n, and hence Xn(~, 6, R) is not pseudo-algebraic. 

Now, by the compactness theorem, we can assume that there are d *, b*'J~ A 

for i,j < 09 such that 
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A ~ Old i, b~'~ (, R] for all i,j, 

and d k, d I (likewise D i'k, ~ia) are disjoint for k ~ l. By rejecting some bi'~ we can 

assume that  bi'~ bkaare disjoint unless ( i , j )  = (k , l ) ,  and also that  

A ~ Old i, ~j.k (, R] --= O[d i, b j'', ~, R] 

when i < j .  Further,  by Ramsey's  theorem, we arrange that  the t ruth value of  

O[di, [~j.k, 6, R] for i < j is independent of  i,j. 

Now since there are no m pairwise disjoint sequences in O[A, ~m,O, 6, R], it 

follows that for all i,j, k, with i < j, A ~ O[d, ~ b j'k, 6, R] if and only if i = j.  Thus 

we get a contradiction as in Claim 6B. 

CLAIM 6E. l f  d = (ti~,..., tin) is pseudo-algebraic over B ~_ A in (A,R), then 

some a i is algebraic over B in (A,R). 

PROOF. Since d is pseudo-algebraic over B, there is a pseudo-algebraic qS(~, b, R) 

(b ~ B), A ~ ~bl-d, b, R]. Hence there is a finite set C = (cl, .-., c,} such that  for any 

d I ~A,  A ~ ~b[d 1, i5, R] implies (d~, ...} and C are not  disjoint. Without  loss of  

generality n is minimal.  Let 

01(zl, ..., z,, 37, r) = (Vg) [qS(g, 37, r) -- V xi = z j] 
i , ]  

O2(z, 37, r) = (3z2, ... , z,) 01(z, z2, ..., z,, r). 

Clearly for some i, A ~ 02Ida,b, R]. As in Claim 4C we can show that  0 2 (z, b, R) 

is algebraic. 

CLAIM 6F. Assume QH is not interpretable by Q~,. Let R ~ R~,(A), and for every 

formula c~, let Z~,,i i = 1, ..., m(c~), d e~ be as in Claim 6C. Let C = (6/~: ~b, i} L) 

(elements algebraic over some ~ } .  

I f  d, [~eA, l ( d )=  l([~)= n and if  the following conditions are met: 

1) i f  di:,..., di, are algebraic over C u (di~}, then (dh,. . . ,di~),  (Dq,...,[hz) 

realize the same type over C in (A,R),  

2) as in (1), interchanging At, D, 

then At, D realize the same type over C. 

PROOF. We prove by induction on n. 

For  n = 1, (1) for l = 1 is the conclusion. 

Suppose we have proved the claim for n; we shall prove it for n + 1. Let 

~b -- q5 (x,)7, ~, r) be a formula, ~ e C. 

I f  each ai is algebraic over d 1 we are finished. By renaming the d~'s we can 
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assume that a2 , ' " ,a~  are algebraic over C u{a~}, but a~+~,-.-,a,+i are not; 

l < n. Let 

a ~ = < a l , . . . , a , > ,  a :  = ( d t + l , . . . , d n + l )  , 

b I = ( b l , . . - , b t ) ,  b ~ = ( b ~ + , , . . . , b , + , ) .  

By (1) and (2), b2,-" ,bl  are algebraic over/3~, but bt+~,...,b,,+~ are not. By 

Claim 6E, d ~, t3 2 are not pseudo-algebraic over, respectively, d ~ tA C, b~ t3 C. 

We must prove that for any gsC,  d?(2,37,~,r), A ~d?[dl, d2,O,R] ~c~[b ~, 

b2, ~, R]. By the induction hypothesis, d ~, D ~ realize the same type over C. Now we 

apply the definition of 0 ~ for ~(3~, 2, 5, R) = ~b(2, 37, ~, R) (see Claim 6C). 

By Claim 6C (1) there is an i such that A ~ Z~,,, [d2,O ~ R]. 

By Claim 6C (2) one of  

Zo.i(fi, F'!',R) ̂  ~(a~,5,r 

Z0.,(fi,s ^ 7 ~(a~,5,~,R) 

(w.l.o.g. the second), is not satisfied by >__ ml(~) pairwise disjoint sequences. As d 2 

is not pseudo-algebraic over d ~ t3 C, clearly 

A ~ qS[d', d 2, ?, n] .  

Since d 2 and b 2 have the same type over C, A ~ Z~.i[b 2, ~ ' ,  R], and since dr, b~ 

have the same type over C, Xo.i[fi,?~,R] ^ -7 q~([9~,37,?~',R) is not satisfied by 

> ml(~) pairwise disjoint sequences. Hence the above reasoning gives that 

which completes the proof. 

CLAIM 6G. Suppose Qn cannot be interpreted by Q~. Then there are 

no, n 1 < co, ~(x,y,~,r), Zi(2i,~,r) i< nl I(2 i) = n i such that (S~n~ ~b(x,y,~,r) 

and (o(x,x,~,r) and (S~"ly)c~(x,y,~,r) hold and for any A ,R  ~ Ro(A) there is a 

d~A,  such that if  d , [ ~ A  (ld)= l(b)= n(~) and if the following conditions are 

met 

1) / f  ~[di,,di~,~,R] for l = 2 , . . . , k  and n i = k  then A ~Z~[di~,...,dlk,d,R]_ 

= )~i[bh, ..., b,~, ?, R], 

2) as in (1), interchanging d and b, 

then A ~ r[a]  - r[b]. 
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PROOF. It follows from Claim 6D and 6F and the compactness theorem. 

(Note that in Claim 6F, we can choose any ?~, as long as it satisfies a first-order 

condition which expresses (1), (2), and (3) of Claim 6C, when we are interested in 

the formula r(ff) only. We can have one ~b because the disjunction of algebraic 

formulae is algebraic and if a is algebraic over B, then for some n, qS, b ~ B, 
< n  A ~(3 = x)4)(x,b,R); hence a satisfies 01(x,b,R) = (3 <=" y)O(y, b, R) A O(x,b,R), 

and (3~"x)Ol(x,b,R) holds.) 

PROOF OF LEMMA 6. Assume Qzx cannot be interpreted by Q~, and we shall 

interpret Q~ by Qv. We use the results and notation of Claim 6G. 

Call a, b n-connected (in (A, R), R ~ R~(A), ~ as in Claim 6G if there are a = c ~ 

c2, . . . ,c"=b such that A ~d?[ci, ci+l,~,R] v~)[ci+l,c~,~,R] for l < i < n .  By 

the remark above, the number of b's n-connected to a is < k(n) < co (k(n) depends 

only on qS, ~ and n). 

Now choose inductively A, ~ A, n > 1 such that A, is a maximal subset of 

A - u ,< ,A~ with no two 2-connected elements. For n > k(2) + 2, A, is empty, 

because if a e A,, then by the definition of A,, (i < n) there is a b~ E Ai such that 

a, bl are 2-connected. So > k(2) elements are two-connected to A, a contradiction. 

Now for any a r b e A,, ~b(A, a, ?, R), qS(A, b, ~, R) are disjoint (because if c is in 

the intersection, then c, a and c, b are 1-connected, hence a, b are 2-connected). 

Now it is clear how to define r by permutations and sets. By dividing the A,'s 

according to I qS(A, a, (, R) I, we get A = u i < ,, Ai, a ~ b ~ A i implies qS(A, a, ~, R) 

n qS(A, b, (, R) = ~ ,  and I O(A, a,(, R) [ = re(i). For each i choose permutations 

of order two fll, ...,f.~(i) such that 

c~(A, a, ~, R) = {fj(a): 1 < j < m(i)}. 

In view of Claim 6G, we thus represent R[eR~,(A)] by the permutations 

[], the sets A~, and the additional sets 

Ai,ka~... {a~Ai: A i = ~ Zk[ft,(a),..., R]}. 

In fact there are only finitely many such possible representations, so by adding 

a sequence of elements, we can encode, by equalities, the proper case. 

REFERENCES 

1. Bell, J. L. and A. B. Slomson, Modsls and Ultraproducts, North Holland, 1969. 
2. P. Erd6s and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 

44 (1969), 467-479. 



300 S. SHELAH Israel J. Math., 

3. Ju. L. Ershov, Undecidability of theories of symmetric and simple finite groups, Dokl. Akad. 
Nauk SSSR 158, (1964) 777-779. 

4. Ju. L. Ershov. New examples of  undecidability of theories, Algebra i Logika 5 (1966), 
37-47. 

5. g.  McKenzie, On elementary types of symmetric groups, Algebra Universalis 1 (1971), 
13-20. 

6. M. D. Morley and R. L. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 
37-57. 

7. A. G. Pinus, On elementary definability of symmetric group and lattices of equivalences, 
Algebra Universalis, to appear. 

8. M. O. Rabirt, A simple method for undecidability proofs, Proc. 1964 Int. Congress for 
Logic, North Holland, 1965, pp. 58-68. 

9. F. D. Ramsey, On aproblem offormal logic, Proc. London Math. Soc. 30 (1929), 338-384. 
10. S. Shelah, There are just four possible second-order quantifiers and on permutation groups, 

Notices Amer. Math. Soc. 19 (1972), A-717. 
11. S. Shelah, First order theory of permutations groups, Israel J. Math. 14 (1973), 149-162; 

and Errata to "First order theory of permutations groups", Israel J. Math. 15 (in press). 

INSTITUTE OF MATHEMATICS 
THE HEBREW UNIVERSITY OF JERUSALEM 

JERUSALEM, ISRAEL 


