THERE ARE JUST FOUR SECOND-ORDER QUANTIFIERS

BY

SAHARON SHELAH

ABSTRACT

Among the second-order quantifiers ranging over relations satisfying a firstorder sentence, there are four for which any other one is bi-interpretable with one of them: the trivial, monadic, permutational, and full second order.

Introduction

The problem of elementary theories of permutation groups was discussed in Vazhenin and Rasin [12], McKenzie [5], Pinus [7], and essentially solved in Shelah [11]. It became clear that this is equivalent to the problem of the expressive power of the quantifier Q_{P} , ranging over permutations. (Of course in rich enough languages it is equivalent to the second-order quantifier, so the interesting case is of languages with no nonlogical symbols.) After examining [11], J. Stavi doubted the naturality of this quantifier, whereas I was convinced that there are no new quantifiers of this kind. At last he suggested, as explication of "this kind", the family of quantifiers Q_{ψ} , where $\psi = \psi(r)$ is a first-order sentence with the single predicate r, and $(Q_{\psi}r)\phi$ means: "There is a relation r satisfying ψ such that ϕ ".... Here we prove that up to bi-interpretability there are really only four such quantifiers. It seems that this justifies the preoccupation with Q_P . We define interpretability in a way even weaker than in [11]: Q_{ψ} , is interpretable in Q_{ψ} , if there is a *first-order* formula $\theta(\bar{x}, y_1, \dots, r_1, \dots)$ such that for any *infinite* set A, and relation R over it, $A \models \psi_1[R]$, there are elements $a_1, \dots \in A$ and relations S_1 , \cdots over A, $A \models \psi_2[S_i]$, such that $A \models (\forall \bar{x}) [R(\bar{x}) \equiv \theta(\bar{x}, a_1, \cdots, S_1, \cdots)].$

Our proofs give somewhat more than what is required. If Q_x is one of those four quantifiers (see Theorem 2 for details) and Q_{ψ} , Q_{X} are bi-interpretable, then

Received October 11, 1972 and in revised form March 5, 1973.

there is a $\theta(\bar{x}, \bar{y}, r_1, \dots, r_n)$ interpreting Q_x by Q_{ψ} with bounded n (that is the bound on n is absolute). No attempt has been made to determine a minimal bound, but notice that if Q_{ψ} , Q_{M} are bi-interpretable (Q_{M} —the monadic quantifier) then by Claim 5H, some $\theta(x, y, r)$ interprets Q_M by Q_{ψ} .

There are several ways in which we can try to generalize our results and most directions were not investigated.

We can quantify over a pair of relations, e.g. two operations defining a field; but this can be reduced to the previous case.

We can permit finite models, but then we can find a quantifier very strong for models with an even number of elements, and trivial for models with an odd number of elements.

We can have quantifiers ranging over pseudo-elementary classes. That is, $(Q_{\psi(r,s)}r)$ ", means "there is an r such that for some *s*, $\psi(r,s)$ holds, and r satisfies \cdots ". In this case, our proofs give similar classification, but the equivalence classes of Q_M , Q_P are divided into infinitely many equivalence classes. It is not so difficult to give a complete picture. If we want to find which cardinals can be characterized by a sentence with such quantifiers but with no nonlogical symbol, we are stuck by the independence of, e.g., the function $2^{\aleph_{\alpha}}$.

Another direction is multi-sorted models. Here the classification depends on *n*-cardinal theorems (see e.g. $\lceil 1 \rceil$) but modulo these, it seems possible to give a classification.

Still another direction is to replace first-order logic by the infinitary logic $L_{\omega_1,\omega}$ (or $L_{\lambda,\omega}$). Here it is reasonable to ignore models of cardinality $\langle \mathbf{I}_{\omega_1} \rangle$. In this case we have a quantifier Q_{II}^{λ} ranging over all two-place relations of cardinality $< \lambda$, where there is $\psi \in L_{\omega_1,\omega}$ which has a model of cardinality μ iff $\mu < \lambda$. We also have the quantifiers ranging over equivalence relations with $\langle \lambda \rangle$ equivalence classes or with equivalence classes of power $\leq \mu < \lambda$ for some μ , where λ satisfies the condition mentioned for Q_{II}^{λ} . It is easy to define when a quantifier Q_{ψ} is interpretable by a set of quantifiers and hence when a quantifier and set of quantifiers, or two such sets, are bi-interpretable.

CONJECTURE. Any Q_{ψ} is bi-interpretable with a finite set consisting of quanti-*6ers mentioned above.*

The following conjecture seems to imply all others. Let A be a fixed infinite set. For each *m*-place relation R over A define " $(Q_Rr) \cdots$ " to mean "there is a relation r over A, $(A, R) \cong (A, r)$ such that \cdots "

CONJECTURE. Any quantifier (Q_Rr) is bi-interpretable with a finite set of *quantifiers* $\{Q_{E,r}\colon i < n\}$ where E_i is an equivalence relation over A.

NOTATION. Let r, s, t denote predicates (= variables over relations); R, S, T (the corresponding) relations; x, y, z individual variables; and a, b, c, d elements. A bar on any one of them means that it is a finite sequence of this sort. Let $\phi, \psi, \theta, \gamma$ denote formulae, first-order if not stated otherwise. $\phi = \phi(x_1, \dots, r_1, \dots)$ means that x_1 , \cdots include all the free variables of ϕ , and r_1 , \cdots include all the predicates in ϕ . L denotes first-order language (always with equality). Let $\psi = \psi(r)$ always, r have $n(\psi)$ places, and $L_{\psi} = L(Q_{\psi})$ be language L with the added second-order quantifier $(Q_{\psi}r) \cdots$ which means "there is an r which satisfies ψ such that...". Let $R_{\psi}(A) = \{R: R \text{ an } n(\psi)$ -ary relation over A, $A \models \psi[R]\}$ (\models denotes satisfaction). Let $(Q_{\psi}\vec{r})$ mean $(Q_{\psi}r_1)\cdots (Q_{\psi}r_n)$, where $\vec{r} = \langle r_1, \cdots, r_n \rangle$. We shall write $\bar{a} \in A$ instead of $\bar{a} = \langle a_1, \dots, a_n \rangle$, $a_i \in A$. For any \bar{a} , $l(\bar{a})$ is its length, and \bar{a}_i or a_i its *i*'th element, so $\bar{a} = \langle a_1, \dots, a_{l(\bar{a})} \rangle$.

Let i, j, k, l, m, n range over natural numbers, $i, j, \alpha, \beta, \gamma, \delta$ over ordinals, and λ, μ, κ over cardinals.

A sequence \bar{a} is without repetitions if $i \neq j$ implies $\bar{a}_i \neq \bar{a}_j$, and \bar{a}, \bar{b} are disjoint if $\tilde{a}_i \neq \tilde{b}_j$ for any *i,j.* Let Eq_i(A) [Eq^{*}(A)] be the set of equivalence relations over A, with each equivalence class having $\langle \lambda | \lambda \rangle$ elements. Let e denote an equivalence relation.

DEFINITION 1. Q_{ψ_1} is interpretable in Q_{ψ_2} if there is a formula $\phi(\bar{x}, \bar{y}, \bar{r}), l(\bar{x})$ $= n(\psi_1)$ such that for any infinite A and $R_1 \in R_{\psi_1}(A)$ there are $\bar{a} \in A$, $\bar{R} \in R_{\psi_2}(A)$ such that

$$
A \models (\forall \bar{x}) [R_1(\bar{x}) \equiv \phi(\bar{x}, \bar{a}, \bar{R})].
$$

DEFINITION 2. Q_{ψ_1} and Q_{ψ_2} are equivalent if each is interpretable in the other.

LEMMA 1. *If* Q_{ψ_1} is interpretable in Q_{ψ_2} , then there is a recursive function F *from the formulae of any language* L_{ψ_1} *into those of* L_{ψ_2} *such that for any infinite model M and sentence* $\theta \in L_{\psi}$, (not necessarily first-order)

$$
M \models \theta \text{ iff } M \models F(\theta).
$$

PROOF. We define $F(\theta)$ for formulae θ , by induction on θ . The only nontrivial case is $\theta = (Q_{\psi_1}r)\chi$. Without loss of generality no variable occurs both in θ and in the interpreting formula ϕ (otherwise change names). Replace in $F(\chi)$ and in

 ψ_1 every occurrence of $r(\bar{z})$ by $\phi(\bar{z}, \bar{y}, \bar{r})$, call the results χ^*, ψ_1^* and let $F(\theta)$ = $(\exists \bar{y}) (Q_{\psi}, \bar{r}) (\chi^* \wedge \psi_1^*).$

Our main result is

THEOREM 2. *Each* Q_{ψ} is equivalent to exactly one of the following quantifiers:

A) Q_I —the trivial quantifier, i.e., Q_{ψ_I} , $\psi_I = r$, $n(\psi_I) = 0$, so L_{ψ_I} is just first*order logic*

B) Q_M —the monadic second-order quantifier, i.e., Q_{ψ_M} , $\psi_M = (\forall x) [\tau(x) \equiv \tau(x)],$ $n(\psi_M) = 1$,

C) *Qp--the permutational second-order quantifier, ranging over permutations of the universe of order two, i.e.* $Q_{\psi_{\mathbf{p}}}$,

$$
\psi_P = (\forall x) [f(f(x)) = x]
$$

(of course we can quantify over functions instead of relations; equivalently we can quantify over $Eq_3(A)$

D) Q_{II} -the (full) second-order quantifier i.e., $Q_{\psi_{II}}, \psi_{II} = (\forall xy)$ $[r(x, y)]$ $\equiv r(x, y)$], $n(\psi_{II}) = 2$.

The proof is broken into a series of lemmas and claims.

LEMMA 3. Q_I can be interpreted in Q_M , Q_M can be interpreted in Q_P , and Q_P can be interpreted in Q_{II} . However, none of the converses holds. (In fact, in *the negative parts, also the conclusion of Lemma 1 fails.)*

PROOF. The positive statements are immediate. As for the negative statements, let L be a language with no predicates or function symbols (except equality, of course), and L_{ord} be the language of models of order.

We know that in $L_{ord}(Q_I)$ there is no formula (with parameters) defining the class of well-ordering but that there is one in $L_{ord}(Q_M)$. Hence Q_M cannot be interpreted by Q_I .

We know that for every sentence $\phi \in L(Q_M)$, either every infinite model satisfies it or no infinite model satisfies it. As in McKenzie [5] (or Pinus [7], Shelah [11]) this is not true for $L(Q_p)$, Q_p cannot be interpreted by Q_M .

By Shelah [11], if a sentence $\phi \in L(Q_P)$ has a model of cardinality $\geq \aleph_{\Omega} \infty$ $(\Omega = (2^{\aleph_0})^+)$ then ϕ has models of arbitrarily high power. Of course $L(Q_H)$ does not satisfy this, hence Q_{II} is not interpretable by Q_P .

LEMMA 4. *If* Q_{ψ} is not interpretable by Q_{I} then Q_{M} is interpretable by Q_{ψ} .

CLAIM 4A. Q_M is interpretable by Q_{ψ} if there is a formula $\phi = \phi(x, \bar{y}, \bar{r}),$

and a set A, $\bar{a} \in A$, $\bar{R} \in R_{\mu}(A)$ such that $\phi(y, \bar{a}, \bar{R})$ divides A into two infinite sets, *that is* $|\phi(A,\bar{a},\bar{R})|\geq \aleph_0, |\neg \phi(A,\bar{a},\bar{R})|\geq \aleph_0$, where $\phi(A,\bar{a},\bar{R})=\{b\in A:$ $A \models \phi[b, \overline{a}, \overline{R}]\}.$

PROOF OF CLAIM 4A. Assuming the existence of such ϕ , by the compactness and Lowenheim-Skolem theorems, for every infinite B there are $\bar{a} \in B$, $\bar{R} \in R_u(B)$ such that $|B| = |\phi(B, \bar{a}, \bar{R})| = |\neg \phi(B, \bar{a}, \bar{R})|$. By applying a permutation of B for every $B_1 \subseteq B$, $|B_1| = |B - B_1| = |B|$, there are $\tilde{a} \in A$, $\bar{R} \in R_{\psi}(B)$ such that $\phi(B, \bar{a}, \bar{R}) = B_1$. Now for every $C \subseteq B$ there are $B_i \subseteq B$ i = 1,..., 4 such that $|B_i| = |B - B_i| = |B|$ and $C = (B_1 \cap B_2) \cup (B_3 \cap B_4)$. Let

$$
\theta = \theta(x, \tilde{y}^*, \tilde{r}^*) = [\phi(x, \tilde{y}^1, \tilde{r}^1) \wedge \phi(x, \tilde{y}^2, \tilde{r}^2)] \vee [\phi(x, \tilde{y}^3, \tilde{r}^3] \wedge \phi(x, \tilde{y}^4, \tilde{r}^4)].
$$

Then as the \hat{a}_i^* range over *B*, and the \bar{R}_i^* range over $R_{\psi}(B), \theta(B, \hat{a}^*, \bar{R}^*)$ ranges over the subsets of B.

DEFINITION 3.

A) The sequences \bar{a}^1 , \bar{a}^2 are *similar* over B if $\bar{a}^i = \langle \cdots, \bar{a}_i^i, \cdots \rangle_{i \leq k}$ and (i) $a_j^1 = a_i^1$ iff $a_j^2 = a_i^2$; (ii) for $b \in B$, $a_j^1 = b$ iff $a_j^2 = b$.

B) The sequences \bar{a}^1 , \bar{a}^2 are similar over \bar{b} iff they are similar over $\{\cdots, \bar{b}_i,\cdots\}$.

CLAIM 4B. *If* Q_M is not interpretable by Q_{ψ} then for every formula $\phi(\bar{x}, \bar{y}, \bar{r})$ *there is a formula* $\theta(z, \bar{y}, \bar{r})$ *and* $n < \omega$ *such that for any A,* $\bar{b} \in A$ *,* $\bar{R} \in R_{\psi}(A)$

- (i) $A \models (\exists^{1\leq n} z) \theta(z, \bar{b}, \bar{R})$ that is $|\theta(A, \bar{b}, \bar{R})| \leq n$
- (ii) if \tilde{a}^1 , \tilde{a}^2 are similar over

 $\{ \dots, \bar{b}_1, \dots \} \cup \theta(A, \bar{b} \bar{R})$ then $A \models \phi(a^{-1}, \bar{b}, \bar{R}) \equiv \phi(\bar{a}^2, \bar{b}, \bar{R}).$

REMARK. In the induction step, only the validity of our claim for the previous case is needed.

PROOF OF CLAIM 4B. We shall prove it by induction on $I(\bar{x})$.

F or $I(\bar{x}) = 1$ by Claim 4A (and compactness) for some m,

 $\theta_m = \left[(\exists^{\leq m} x) \phi(x, \bar{y}, \bar{r}) \rightarrow \phi(z, \bar{y}, \bar{r}) \right] \wedge \left[(\exists^{\leq m} x) \negthinspace \rightarrow \phi(x, \bar{y}, \bar{r}) \rightarrow \negthinspace \rightarrow \phi(z, \bar{y}, \bar{r}) \right]$ satisfies our demands.

Suppose we have proved it for $I(\bar{x}) \leq l$, and we shall prove it for the case $l(\bar{x}) = l + 1$. Choose any *A*, $\bar{b} \in A$, $\bar{R} \in R_{\psi}(A)$ and $\bar{x} = \langle x_1, \dots, x_{l+1} \rangle$, \bar{x}^1 $=\langle x_1, \dots, x_l \rangle, \bar{y}^1 = \langle x_{l+1}, \bar{y}_1, \dots \rangle$. For $\phi(\bar{x}^1, \bar{y}^1, \bar{r})$ we have proved the claim, and let $\theta(z, \bar{y}^1, \bar{r})$, *n* be as mentioned there. Now for any $a \in A$ let $Ex(a)$ $=\theta(A, a, \bar{b}, \bar{R}) - \{a, \dots, \bar{b}_i, \dots\}.$ Thus $|Ex(a)| \leq n$ always.

Let us show that $\bigcup_{a \in A} Ex(a)$ is finite. If not, define by induction on $i < \omega$, $a_i \in A - \{a_j : j < i\}$, c_i such that $Ex(a_i) \not\subseteq \bigcup_{j < i} Ex(a_j)$, and $c_i \in Ex(a_i) - \bigcup_{j < i} C_j$ $Ex(a_i)$. By Ramsey's theorem we can assume (by replacing the sequence of a_i 's and c_i 's by a subsequence) that the truth value of $c_i \in Ex(a_i)$ depends only on whether $i = j$, $i < j$ or $i > j$. Clearly $c_i \in Ex(a_i)$, and for $j > i$, $j < \omega$, $c_i \notin Ex(a_i)$. Since $|Ex(a_i)| \leq n$, clearly there is an $i < n + 2$ such that $c_i \notin Ex(a_{n+2})$. Hence $c_i \in Ex(a_j)$ iff $i = j$. Similarly $c_i = c_j$ iff $i = j$; and $a_i \neq c_j$. As the a_i 's and c_i 's are distinct, we can assume that none of them appear in \bar{b} . Let f be a permutation of A which interchanges c_{3i+1} with c_{3i+2} , and takes the other elements of A to themselves. Let \bar{R}^* be the image of \bar{R} by f (so f is an isomorphism from (A,\bar{R}) onto (A,\bar{R}^*)). Clearly $A \models (\forall x) [\theta(x, a_i, \bar{b}, \bar{R}) \equiv (x, a_i, \bar{b}, \bar{R}^*)]$ iff f takes the set $\theta(A, a_i, \bar{b})$ \bar{b}, \bar{R}) onto itself iff i is divisible by three; thus

$$
\chi(y, \bar{b}, \bar{R}, \bar{R}^*) = (\forall x) \left[\theta(x, y, \bar{b}, \bar{R}) \equiv \theta(x, y, \bar{b}, \bar{R}^*) \right]
$$

satisfies the conditions mentioned in Claim 4A, a contradiction. Hence $C = \bigcup_{a \in A}$ *Ex(a)* is finite. Let $C = \{c_1, \dots, c_j\}$, $\bar{c} = \langle c_1, \dots, c_j \rangle$.

DEFINITION 4. Let us call $\chi(\bar{z})$ complete if it is a conjunction such that for every *i,j,* $z_i = z_j$ or $z_i \neq z_j$ is a conjunct (and all the conjuncts are of this form).

Let $\chi_i(\bar{x}^1, x, \bar{y}, \bar{z})$ i = 1, \cdots , k be a list of all complete formulae in the displayed variables. By definition of Ex for every i, and $a \in A$

or

(i)
$$
A \models (\forall \bar{x}^1) [\chi_i(\bar{x}^1, a, \bar{b}, \bar{c}) \rightarrow \phi(\bar{x}^1, a, \bar{b}, \bar{R})]
$$

(ii) $A \models (\forall \bar{x}^1) [\chi_i(\bar{x}^1, a, \bar{b}, \bar{c}) \rightarrow \neg \phi(\bar{x}^1, a, \bar{b}, \bar{R})].$

For each a let $I(a)$ be the set of i's for which (i) holds.

By Claim 4A, except for finitely many a 's, all $I(a)$ are equal (to I). Let $C¹$ be the set of exceptional *a's.* It is easy to check that:

(*) if \bar{a}^1, \bar{a}^2 are similar over $C^2 = \{ \cdots, \bar{b}_i, \cdots \} \cup C \cup C^1$, then $A \models \phi[\bar{a}^1, \bar{b}, \bar{R}]$ $\equiv \phi[\bar{a}^2, \bar{b}, \bar{R}]$; C^2 is finite.

Without loss of generality we cannot replace $C²$ by a set of smallest cardinality satisfying (*). Let $n_1 = |C^2|$, and let $\theta_1 = \theta_1(z, \bar{y}, \bar{r})$ say that there are z_2, \dots, z_{n_1} , such that if \bar{x}^1, \bar{x}^2 are similar over $\{z, z_2, \dots, z_{n_1}, \dots, \bar{y}_i, \dots\}$, then $\phi(\bar{x}^1, \bar{y}, \bar{r})$ $\equiv \phi(\bar{x}^2, \bar{y}, \bar{r}).$

SUBCLAIM 4C. $\theta_1(A, \bar{b}, \bar{R})$ is finite.

PROOF OF SUBCLAIM 4C. If not, there are distinct C_i^2 , $i < \omega$ satisfying (*), $|C_i^2|=n_1.$

Now w.l.o.g. there is a C^* , $|C^*| < n_1$, such that for any $i < j < \infty$, $C_i^2 \cap C_j^2 = C^*$; this follows by Erdös and Rado $[2]$, but we can also prove it directly. Let $C_i^2 = \{c_{i,1}^2, \dots, c_{i,n}^2\}$, and by Ramsey's theorem [9] there is an infinite $I \subseteq \omega$, such that for $1 \leq l, k \leq n_1, i < j \in I$, the truth value of $c_{i,j}^2 = c_{j,k}^2$ does not depend on the particular *i, j.* Without loss of generality $I = \omega$. Let

$$
C^* = \{c_{0,k}^2 : c_{0,k}^2 = c_{1,k}^2, \quad 1 \le k \le n_1\}.
$$

By definition of I, $C^* \subseteq C_i^2$ for every i. As $C_0^2 \neq C_i^2$, $|C^*| < n_1$. Let $i < j < \omega$. Then clearly $C^* \subseteq C_i^2 \cap C_i^2$; if equality does not hold let $c \in C_i^2 \cap C_i^2 - C^*$. Thus $c = c_{i,k}^2 = c_{j,i}^2$; since $i < j$, this implies $c_{0,k}^2 = c_{2,i}^2$, $c_{1,k}^2 = c_{2,i}^2$, $c_{0,k}^2 = c_{j,i}^2$. Hence $c_{0,k}^2 = c_{1,k}^2 = c_{j,l}^2 = c, c_{0,k}^2 \in C^*$, and $c \in C^*$, a contradiction. So it is proved that w.l.o.g, there is such a C^* , but if \bar{a}^1 , \bar{a}^2 are similar over C^* then they are similar over all C_i^2 except finitely many, and this contradicts the definition of n_1 . Thus Subclaim 4C is proved.

CONTINUATION OF THE PROOF OF CLAIM 4B. Let $\left|\theta_1(A, \bar{b}, \bar{R})\right| = n_2$.

So $\theta_1(z, \bar{y}, \bar{r})$, n_2 satisfy the demands in Claim 4B except that they depend on A, \bar{b} , \bar{R} . By the compactness theorem there are $\theta^i(z, \bar{y}, \bar{r})$, n^i $i = 1, \dots, k(<\omega)$ such that for any $A, \bar{b} \in A$, $\bar{R} \in R_{\psi}(A)$ there is an *i* such that θ^{i} , n^{i} satisfy the demands of the claim. Let $\theta^* = \theta^*(z, \bar{y}, \bar{r}) = \vee_i [(\exists^{\leq n_i} u) \theta^i(u, \bar{y}, \bar{r}) \wedge \theta^i(z, \bar{y}, \bar{r})].$ Clearly this is the right one, so Claim 4B is proved.

PROOF OF LEMMA 4. Assume Q_M is not interpretable by Q_{ψ} . Use Claim 4B for $\phi(\bar{x}, r) = r(\bar{x})$, and let θ, n be the θ, n whose existence is proved there. Let $\chi_i(\bar{x}, \bar{z})$ ($l(\bar{z}) = n$) $i = 1, \dots, k$ be the complete formulae mentioned in the proof of Claim 4B. Let I_1, \dots, I_{2^k} be the subsets of $\{1, \dots, k\}$.

Let

$$
\phi^*(\tilde{x},\tilde{y},\tilde{z}) = \bigwedge_j \quad [y_{2j} = y_{2j+1} \rightarrow \bigvee_{i \in Ij} \chi_i(\tilde{x},\tilde{z})].
$$

For an infinite A, for every $\bar{R} \in R_{\psi}(A)$ let $\{c_1, \dots, c_n\} \supseteq \theta(A, \bar{R})$.

Let $I = \{i : (\exists \bar{x}) [\chi_i(\bar{x}, \bar{c}) \wedge r(\bar{x})]\}, j$ be such that $I = I_j$. Define b such that $b_{2p} = b_{2p+1}$ iff $p = j$. Then

$$
A \models \phi^*(\bar{x}, \bar{b}, \bar{c}) \equiv r(\bar{x}),
$$

a contradiction. Thus Lemma 4 is proved.

LEMMA 5. If Q_{ψ} is not interpretable by Q_M then Q_P is interpretable by Q_{ψ} .

PROOF. Clearly Q_{ψ} is a *fortiori* not interpretable by Q_{I} , hence by Lemma 4, Q_M is interpretable by Q_{ψ} .

CLAIM 5A. Q_P is interpretable by Q_ψ if there is a formula $\phi(x, y, \bar{z}, \bar{r})$, a set *A,* $\bar{c} \in A$ *,* $\bar{R} \in R_{\psi}(A)$ *,* $B \subseteq A$ *such that* $\phi(x, y, \bar{c}, \bar{R})$ *defines on B an equivalence relation with infinitely many equivalence classes with* ≥ 2 *elements.*

PROOF OF CLAIM 5A. The proof is similar to that of Claim 4A. By replacing B by a subset, we may assume that each equivalence class has exactly two elements and that $A - B$ is infinite. Now for every infinite A, by the compactness and the Lowenheim-Skolem theorems, there are $B \subseteq A$, $\bar{a} \in A$, $\bar{R} \in R_{\psi}(A)$, such that $|B| = |A - B| = |A|$, and $\phi(x, y, \bar{a}, \bar{R})$ defines on B a relation $\in Eq_2^*(B)$. We can easily find $\bar{b} \in A$, $\bar{S} \in R_{\psi}(A)$ such that $\phi(x, y, \bar{b}, \bar{S})$ defines on $A - B$ an equivalence relation from Eq^{*}(A-B). Also there is a formula $\phi^*(x, \bar{c}, \bar{T})$ $\bar{c} \in A$, $\bar{T} \in R_{\psi}(A)$, which defines B. So

$$
\theta(x, y, \bar{a}, \bar{b}, \bar{c}, \bar{R}, \bar{S}, \bar{T}) = [\phi^*(x, \bar{c}, \bar{T}) \equiv \phi^*(y, \bar{c}, \bar{T})]
$$

$$
\wedge [\phi^*(x, \bar{c}, \bar{T}) \rightarrow \phi(x, y, \bar{a}, \bar{R})] \wedge [\neg \phi^*(x, \bar{c}, \bar{T}) \rightarrow \phi(x, y, \bar{b}, \bar{S})]
$$

defines a relation from Eq $^*(A)$.

Clearly for every $e \in Eq_2^*(A)$ there are $\bar{a}', \bar{b}', \bar{c}' \in A$, $\bar{R}', \bar{S}', \bar{T}' \in R_u(A)$, such that

$$
A \models (\forall xy) [\theta(x, y, \bar{a}, \cdots) \equiv xey].
$$

Since we can interpret Q_M in Q_{ψ} , by a small change in θ we can have the same for $e \in Eq_3(A)$. This proves the claim.

DEFINITION 5. We call $\phi = \phi(x_1, \dots, x_n, r)$ atomic if $\phi = [x_i = x_i]$ or ϕ $= r(x_{i_1}, \cdots x_{i_{n(k)}}).$

DEFINITION 6. For every A, $B \subseteq A$, $R \in R_{\psi}(A)$, define the equivalence relation $e = e(R, B, A)$ over B by *bec iff b, c \ie B,* and for every atomic $\phi(x_1, \dots, x_n)$ and $a_2, ..., a_n \in A - B, A \models \phi[b, a_2, ..., R] \equiv \phi[c, a_2, ..., R].$

CLAIM 5B. *e(R,B,A) is defned by a formula in A (with R and B as parameters).* PROOF. Immediate.

CLAIM 5C. *If* Q_F is not interpretable by Q_{ψ} , then for every $A, B \subseteq A, R \in R_{\psi}(A)$, *e(R,B,A) has fnitely many equivalence classes.*

PROOF. Suppose $e(R, B, A)$ has infinitely many equivalence classes. By Claim 5A, only finitely many of them have ≥ 2 elements. But if we replace B by a smaller set, $e(R, B, A)$ becomes finer (i.e., the equivalence classes become smaller). Hence

w.l.o.g. each equivalence class of $e(R, B, A)$ has one element, and of course B is infinite.

Let f be a permutation of order two of A, such that $f(a) = a \leftrightarrow a \notin B$. Define

$$
R_1 = \{ \langle a_1, \dots \rangle : a_1, \dots \in A, \ \langle f(a_1), \dots \rangle \in R \}.
$$

Let

$$
e_1 = \{ \langle c, b \rangle : b, c \in B, \text{ for every atomic } \phi(x, \bar{y}, r) \text{ and}
$$

every $\bar{a} \in (A - B)$; $A \models \phi[c, \bar{a}, R] \equiv \phi[b, \bar{a}, R_1]$
 $A \models \phi[b, \bar{a}, R] \equiv \phi[c, \bar{a}, R_1] \}.$

It is easy to see that $c = f(b)$, $c, b \in B$ implies $\langle c, b \rangle \in e_1$. It is easy to check that $\langle c, b \rangle \in e_1$ implies $\langle c, f(b) \rangle \in e(R_1, B, A)$ but this implies $c = f(b)$.

Hence $[\langle x, y \rangle \in e_1]$ $\vee x = y$ defines an equivalence relation of Eq₂(B), and clearly it is definable by a formula. By Claim 5A this leads to a contradiction, hence 5C is proved.

CLAIM 5D. *If* Q_P is not interpretable by Q_{ψ} , then there is a formula $\phi(x, y, r)$ *such that for every A,* $R \in R_u(A)$.

(i) $\phi(x, y, R)$ defines an equivalence relation with finitely many equivalence *classes.*

(ii) $A \models \phi[a, b, R]$ implies that there is a finite B such that $\langle a, b \rangle \in e(R, B, A)$.

PROOF. Define for *A*, $R \in R_u(A)$ $n < \omega$ the relation

 $e_n(R, A) = \{ \langle c, b \rangle : c, b \in A, \text{ there is } B \subseteq A, |B| \leq n \}$

such that $\langle c, b \rangle \in e(R, B, A)$.

Define $\phi_n(x, y, r)$ such that $A \models \phi_n[c, b, R]$ iff $\langle c, b \rangle \in e_n(R, A)$, $R \in R_\psi(A)$. Note that $\phi_{n+1}(x, y, r) \rightarrow \phi_n(x, y, r)$ always.

Clearly $e^*(R, A) = \bigcup_{n \leq \omega} e_n(R, A)$ is an equivalence relation over A. Moreover it has only finitely many equivalence classes. Otherwise choose nonequivalent a_i $1 \le i < \omega$. By Claim 5C and the compactness theorem, there is $n_0 < \omega$ such that $e(R^1, B, A)$ always has $\leq n_0$ equivalence classes, for $B \subseteq A$, $R^1 \in R_{\psi}(A)$. Let $B = \{a_i : 1 \leq i \leq n_0 + 1\}$. Then $e(R, B, A)$ has $n_0 + 1$ equivalence classes (by the choice of the a_i 's and the definition of e^*). We prove in fact that $e^*(R, A)$ has $\leq n_0$ equivalence classes for any $R \in R_{\psi}(A)$. Hence in

$$
\Gamma = \{ \psi(r) \} \cup \{ \neg \phi_n(x_i, x_j, r) \colon n < \omega, \ 1 \leq i < j \leq n_0 + 1 \}
$$

there is a contradiction.

Thus for some $n_1 < \omega$ there is a contradiction in

$$
\{\psi(r)\}\cup\{\neg\phi_n(x_i,x_j,r)\colon n < n_1, \ 1\leq i < j \leq n_0+1\}.
$$

The closure of $\phi_{n}(x, y, r)$ to an equivalence relation is

~b(x,y, r) = *"fOzl,'",zm) 4).,(zt,z~+l,r) ^ Zo = x ^ Zm = y ' 1*

where $m = 3n_0$ is sufficient. This is because for every $A, R \in R_{\psi}(A)$ there is a maximal set $\{a_i: 1 \leq i < i_0\}$ such that $i < j < i_0$ implies $A \models \neg \phi_{n_i}(a_i, a_j, R)$; hence $i_0 \leq n_0$ by the definition of n_1 . By the maximality of the set, for every $a \in A$ for at least one *i* $A \models \phi_{n_i}(a, a_i, R)$. Now if *b, c* are equivalent in the closure of e_{n} (R, A) then there are d_1 , ..., d_m , $d_1 = b$, $d_m = c$ and $\langle d_i, d_{i+1} \rangle \in e_{n}$ (R, A). Choose such d_i 's with minimal m; we should show $m \leq 3n_0$. For this it suffices to prove there are no four d_i from one $\phi_{n_i}(A, a_i, R)$. Let $1 \leq i_1 < i_2 < i_3 < i_4 \leq m$, $d_{i_1}, \dots, d_{i_4} \in \phi_{n_1}(A, a_j, R)$. Then $\langle d_{i_1}, a_j \rangle$, $\langle a_j, d_{i_4} \rangle \in e_{n_1}(R, A)$, hence also d_1, \dots, d_{i_1} , \bar{a}_j , $d_{i_4} \cdots d_m$ is a suitable sequence, and it has smaller length, a contradiction. '

Since $e^*(R,A)$ is an equivalence relation, it refines the closure of $e_n(R,A)$. Hence $R \in R_{\psi}(A)$, $A \models \phi[b, c, R]$ implies that there is a finite $B \subseteq A$ such that $\langle b, c \rangle \in e(R, B, A).$

CLAIM 5E. In Claim 5D we conclude also that there are $\theta(z, x, y, r)$, $n_2 < \omega$ *such that for any A,* $R \in R_u(A)$, $b, c \in A$,

(i) $A \models (\forall x \, \nu) (\exists^{\leq n_2} z) \, \theta(z, x, \nu, R)$

(ii) $A \models (\forall xyz) [\theta(z, x, y, R) \rightarrow z \neq x \land z \neq y]$

- (iii) $A \models \phi \lceil b, c, R \rceil$ implies $\langle b, c \rangle \in e(R, B, A)$ where $B = \theta(A, b, c, R) \cup \{b, c\}$
- (iv) $A \models \neg \phi(b, c, R]$ implies $A \models (\forall z) \neg \theta(z, b, c, R)$.

PROOF. By the compactness theorem and Claim 5D, there is an $n_3 < \omega$ such that $R \in R_{\psi}(A), A \models \phi[b, c, R]$ implies $\langle b, c \rangle \in e_{n}$, (R, A) .

Let $\theta(z, x, y, r)$ say " $\phi(x, y, r)$, $z \neq x$, $z \neq y$ and for some $n \leq n_3$ there are no z_1, \dots, z_{n-1} such that $\langle x, y \rangle \in e(r, \{x, y, z_1, \dots, z_{n-1}\})$, but there are z_1, \dots, z_n such that $\langle x, y \rangle \in e(r, \{x, y, z_1, \dots, z_n\},$ and $z = z_1$ ". As in the proof of Claim 4C for all $R \in R_v(A)$, $b, c \in A$, $\theta(A, b, c, R)$ is finite, and so clearly the claim holds.

CLAIM 5F. *In the conclusion of Claim* 5E we *can add*

(v) *there is* $n_4 < \omega$ *such that for* $R \in R_{\psi}(A)$

$$
A \models (\exists^{\leq n_4} z) (\exists xy) \theta(z, x, y, R).
$$

For this it suffices to prove Claim 5G (by applying Claim 5G twice we get Claim 5F).

CLAIM 5G. *If* Q_P is not interpretable by Q_ψ , and for any $R \in R_\psi(A)$, $A \models (\forall \overline{x})$ $(\forall y)$ ($\exists^{2^m} z$) $\theta(z, y, \bar{x}, R)$ and $\theta(z, y, \bar{x}, r) \rightarrow z \neq y$, then for some $m_2 < \omega$, for every $R \in R_{\psi}(A)$

$$
A \models (\forall \bar{x}) (\exists^{\leq m_2} z) (\exists y) \theta(z, y, \bar{x}, R).
$$

PROOF. If not, by the compactness theorem, there are A, $R \in R_{\mu}(A)$, $\bar{a} \in A$ such that

(1) $A \models (\forall y) (\exists^{\leq m} z) \theta(z, y, \bar{a}, R)$

(2) for every finite $B \subseteq A$ there are $b \in A$, $c \in A - B$, $A \models \theta(c, b, \bar{a}, R)$.

Define by induction on n, $b_n \in A$, $c_n \in A - \{c_i : i < n\}$ such that $A \models \theta[c_n, b_n, \tilde{a}, R]$. By Ramsey's theorem [9] we can assume that the truth value of $A \models \theta[c_m, b]$ b_n , \bar{a} , R], $b_n = c_m$ depends only on whether $m = n$, $m < n$ or $m > n$. Since, $A \models (\exists^{ \leq m_1} z) \theta(z, b_n, \bar{a}, \bar{R})$ clearly $A \models \theta[c_m, b_n, \bar{a}, R]$ it. $m = n$ (reccal that the c_n 's are distinct); therefore, b_n 's are distinct. Also $b_n \neq c_m$ because (1) if $n = m$, this holds by the assumption on θ , (2) if $n < m$, then $c_1 = b_0 = c_2$, a contradiction, and (3) if $n > m$, $c_1 = b_3 = c_2$, a contradiction.

Also w.l.o.g. $b_n \neq \bar{a}_i$, $c_n \neq \bar{a}_i$, $\varepsilon \neg \theta[c_n, c_m, \bar{a}, R] \wedge \neg \theta(b_n, b_m, \bar{a}, R]$ for $n \neq m$ (otherwise omit finitely many $\langle c_i, b_i \rangle$'s). Let

$$
B = \{b_n : n < \omega\} \cup \{c_n : n < \omega\}.
$$

Now the formula $y = z \lor \theta(z, y, \bar{a}, R) \lor \theta(y, z, \bar{a}, R)$ defines on B a relation of $Eq[*]₅(B)$, a contradiction. Thus Claim 5G, and hence Claim 5F are proved.

CLAIM 5H. *If* Q_P is not interpretable by Q_{ψ} , then for every $A, R \in R_{\psi}(A)$, $e^+(R, A) = \{ \langle a, b \rangle : a, b \in A, \text{ the permutation } f(f(a) = b, f(b) = a, f(c) = c \text{ for }$ $c \neq a,b$) is an automorphism of (A,R) is an equivalence relation with finitely *many equivalence classes.*

PROOF. Define by induction on $n, 1 \leq n < \omega$, formulae

$$
\phi_n(x, y, r)
$$
, $\theta_n(z, r)$ such that

1) for any $R \in R_{\psi}(A)$, $\phi_n(x, y, R)$ is an equivalence relation with $\langle k_1(n) \rangle \langle \omega \rangle$ equivalence classes

2) for any $R \in R_{\psi}(A)$, $|\theta_n(A,R)| \leq k_2(n) < \omega$

3) for any $R \in R_{\psi}(A)$, $a, b \in A$, $A \models \phi_n[a, b, R]$ implies $\langle a, b \rangle \in e(R, (B_n - B_{n-1}))$ $\cup \{a, b\}, A$

4) for any $1 \le n \le m < \omega$, $\theta_n(A, R) \subseteq \theta_m(A, R)$ where $B_0 = \emptyset$, $B_n = \theta_n(A, R)$.

For $n = 1$ the existence of ϕ_1 , θ_1 follows from Claims 5D, 5E, and 5F and the compactness theorem. (Take $\phi_1 = \phi$, $\theta_1 = (\exists xy)\theta(z, x, y, r)$.)

Suppose $\phi_n \theta_n$ are defined. Let $c_1, \dots, c_k[k] = \sum_{i=1}^n k_2(l)$ be individual constants, and replace $\psi(r)$ by

$$
\psi(r) \wedge (\forall z) \left[\bigvee_{i=1}^{n} \theta_{i}(z, r) \equiv \bigvee_{i=1}^{k} z = c_{i} \right].
$$

Now repeat the proof of Claims 5D, E and F (the change from r to r and c 's is technical; just add more atomic formulae). Hence we get ϕ_{n+1} θ_{n+1} as we got ϕ_1 θ_1 . Clearly (1), (2) and (3) hold.

Now for any $R \in R_{\psi}(A)$ define

$$
e' = \{\langle a,b\rangle : (\forall n < \omega)A \models \phi_n[a,b,R]\}.
$$

Clearly e' is an equivalence relation with $\leq 2^{\aleph_0}$ equivalence classes.

It is also clear that $e^+(R, A)$ is an equivalence relation. We shall now show that if *a e'b, a,b* $\notin \bigcup_{n} B_n$ and their *e'*-equivalence class is infinite, then *a* $e^+(R, A)b$.

This implies that $e^+(R, A)$ has $\leq 2^{\aleph_0}$ equivalence classes, hence by the compactness theorem this is sufficient. For proving that the permutation interchanging a, b is an automorphism, it suffices to prove that if $\phi(x, y, z_1, \dots, z_m; r)$ is atomic, $c_1, ..., c_m \in A - \{a, b\}, \ \ \models \phi(a, b, c_1, ..., c_m, r) \equiv \phi(b, a, c_1, ..., c_m).$ We can choose n such that $(B_{n+1} - B_n) \cap \{c_1, \dots, c_m, a, b\} = \emptyset$ and a_1 such that $a_1 \neq a$, $a_1 \neq B_{n+1}$ $\cup \{c_1, \dots, c_m, a, b\}$. By (3)

$$
\models \phi[a, b, c_1, \cdots, c_m, r] \equiv \phi[a_1, b, c_1, \cdots, c_m, r],
$$

\n
$$
\models \phi[a_1, b, c_1, \cdots, c_m, r] \equiv \phi[a_1, a, c_1, \cdots, c_m, r]
$$
 and also
\n
$$
\models \phi[a_1, a, c_1, \cdots, c_m, r] \equiv \phi[b, a, c_1, \cdots, c_m, r].
$$
 Combining we get the result.

PROOF OF LEMMA 5. From Claim 5H and the compactness theorem, it follows that if Q_p is not interpretable by Q_{ψ} then there is some $n_5 < \omega$ such that for any *A, R* \in *R_v*(*A*), $e^{+}(R, A)$ has $\leq n_5$ equivalence classes. Let us show that this implies that Q_{ψ} is interpretable by Q_M . This implies that for every $A, R \in R_{\psi}(A)$, there are sets B_1, \dots, B_n , (the $e^+(R, A)$ equivalence classes) such that the truth value of $R[a_1, \dots, a_{n(\psi)}]$ ($a_i \in A$) depends only on the truth values of $a_i = a_i$, $a_i \in B_k$; hence there is a (quantifier free) formula ϕ such that

$$
A \models (\forall \bar{x}) [R(\bar{x}) \equiv \phi(\bar{x}, B_1, \cdots, B_{n})].
$$

From the construction, the number of possible ϕ 's is finite, and let them be $\phi_1, \dots, \phi_{n\kappa}$. Let

$$
\phi^* = \bigwedge_{i=1} [y_0 = y_i \rightarrow \phi_i(\bar{x}_1, X_1, \cdots, X_{n_s})]
$$

 $(X_i$ -variables over sets).

Hence for every infinite A, and $R \in R_{\psi}(A)$ there are $c_0, \dots, c_{n_6}, B_1, \dots, B_{n_5}$ such that

$$
A \models (\forall \bar{x}) [R(\bar{x}) = \phi^*(\bar{x}, \bar{c}, B_1, \cdots)].
$$

Thus the proof of Lemma 5 is complete.

LEMMA 6. If Q_{ψ} is not interpretable by Q_{P} then Q_{II} is interpretable by Q_{ψ} . **PROOF.** As Q_{ψ} is not interpretable by Q_{P} , it is obviously not interpretable by Q_M ; hence by Lemma 5, Q_P is interpretable by Q_{ψ} .

DEFINITION 7.

1) A family of sequences of length n is pseudofinite if there is a finite set such that in every sequence of the family appears an element from the finite set.

2) A family F of sequences of length n from a model (A,\overline{R}) is $\phi(\overline{x}, \overline{y}, \overline{r})$ -minimal in (A, \bar{R}) $(l(\bar{x}) = n)$ if it is not pseudo-finite, but for any $\bar{a} \in A$, $\{\bar{b} \in F: A \models$ $\{\phi[\bar{b}, \bar{a}, \bar{R}]\}$ is pseudo-finite *or* $\{\bar{b} \in F: A \models \neg \phi(\bar{b}, \bar{a}, \bar{R})\}$ is pseudo finite.

3) $\phi(x, \bar{a}, \bar{R})$ is algebraic (in (A, \bar{R})) if $|\phi(A, \bar{a}, \bar{R})| < \aleph_0$.

4) $\phi(\bar{x}, \bar{a}, \bar{R})$ is pseudo-algebraic (in (A, \bar{R})) if $\{b \in A : A \models \phi [b, \bar{a}, R]\}$ is pseudofinite.

5) $a(\bar{a})$ is (pseudo-) algebraic over B in (A,\bar{R}) if for some (pseudo-)algebraic $\phi(x, \bar{b}, \bar{R})$ ($\phi(\bar{x}, \bar{b}, \bar{R})$), $A \models \phi[a, b, \bar{R}]$ ($A \models \phi[\bar{a}, b, R]$) and $b \in B$.

6) The type of \bar{b} over B in (A,\bar{R}) is $\{\phi(\bar{x},\bar{c},\bar{R})\colon \bar{c} \in B, A \models \phi[\bar{b},\bar{c},\bar{R}]\}.$

CLAIM 6A. Q_{II} is interpretable by Q_{ψ} if there are $\phi(\bar{x},\bar{y},\bar{z},\bar{r})$ $[\ell(\bar{x}) = \ell(\bar{y}) = n]$, $A, \ \overline{R} \in R_{\psi}(A), \ \overline{c} \in A, \ B \subseteq A \ \text{such that} \ \phi(\overline{x}, \overline{y}, \overline{c}, \overline{R}) \ \text{defines over} \ \mathbb{R}^n = \{\overline{b} : \overline{b} \in B,$ $l(b) = n$ *an equivalence relation, with infinitely many non-pseudo-finite equivalence classes.*

PROOF. For $n = 1$, we can show as in Claim 4A, Claim 5A that we can interpret the quantifier over equivalence relations. By Rabin [8], it then follows that we can interpret Q_{II} .

Now we shall reduce the case $n > 1$ to $n = 1$, using the interpretability of Q_P by Q_{ψ} .

Choose by induction on max $\{i, j\}$ sequences \tilde{a}^{i} , $j < \omega$ such that

- 1) $\bar{a}^{i,j} \in B$
- 2) $A \models \phi[\bar{a}^{i,j}, \bar{a}^{i,k}, \bar{c}, \bar{R}]$ iff $i=l$
- 3) for $\langle i,j \rangle \neq \langle l,k \rangle$, $\bar{a}^{i,j}$, $\bar{a}^{l,k}$ are disjoint, and $\bar{a}^{i,j}$, \bar{c} are disjoint.

For $m = 1, n$, define f_m as the permutation of A (of order two) interchanging $\tilde{a}_1^{i,j}$ with $\tilde{a}_m^{i,j}$ for $i,j < \omega$, and taking any other $b \in A$ to itself.

Let $B^* = \{\bar{a}_1^{i} \cdot i, j < \omega\}.$

Now the formula

$$
\phi^*(x, y, \bar{z}, \bar{R}, f_1, \cdots, f_n) = \phi(f_1(x), f_2(x), \cdots, f_n(x), f_1(y), f_2(y), \cdots, f_n(y), \bar{c}, \bar{R})
$$

defines on B^* an equivalence relation with infinitely many infinite equivalence classes. This proves Claim 6A.

CLAIM 6B. Q_H is interpretable by Q_{ψ} if there are $\phi(\bar{x}, \bar{y}, r)$, $A, R \in R_{\psi}(A)$ and $\tilde{a}^n \in A(n < \omega)$, such that for every $n < \omega$, $\theta_n = \wedge_{m \le n} \phi(\bar{x}, \bar{a}^m, R) \wedge \neg \phi(\bar{x}, \bar{a}^n, R)$ is *not pseudo-algebraic.*

PROOF. By the compactness theorem we can assume that each formula θ_n is satisfied by $> 2^{\aleph_0}$ pairwise disjoint sequences. Let

$$
B = \{\bar{a}_i^m : m < \omega, 1 \le i \le l(\bar{a}^m)\}, e = \{\langle \bar{b}, \bar{c} \rangle : \bar{b}, \bar{c} \in A, l(\bar{b}) = l(\bar{c})\}
$$
\n
$$
= l(\bar{x}), (\forall \bar{a} \in B) \land \models \phi[\bar{b}, \bar{a}, R] \equiv \phi[\bar{c}, \bar{a}, R]\}.
$$

Then e is an equivalence relation over $^{l(\bar{a}^m)}A$. The set of sequences which satisfies θ_n is split into at most 2^{\aleph_0} equivalence classes (as $|B| = \aleph_0$), so at least one of them contains $> 2^{\aleph_0}$ pairwise disjoint sequences, hence is not pseudo-finite. Clearly for $n \neq m$, a sequence satisfying θ_n and a sequence satisfying θ_m are not equivalent. Thus we get our result by Claim 6A.

CLAIM 6C. *If* Q_{II} is not interpretable by Q_{ψ} then for every $\phi(\bar{x}, \bar{y}, r)$ there are $m(\phi) < \omega$, and $\chi_{\phi,i}(\bar{x}, \bar{z}, r)$ $i = 1, \dots, m(\phi)$ such that

for any A, $R \in R_{\psi}(A)$ *there is* $\bar{c} \in A$ *which satisfies*

1) $A \models (\forall \bar{x}) \vee \substack{m(\phi) \\ i=1} \chi_{\phi,i}(\bar{x}, \bar{c}, R)$

2) $A \models \neg (\exists \bar{x}) [\chi_{\phi,i}(\bar{x}, \bar{c}, R) \land \chi_{\phi,i}(\bar{x}, \bar{c}, R)]$ for $i \neq j$

3) *the sets* $S_i = \{\bar{a}: A \models \chi_{\phi,i}[\bar{a}, \bar{c}, R]\}$ *are* $\phi(\bar{x}, \bar{y}, r)$ -minimal; moreover for some *fixed* $m_1(\phi) < \omega$, for no S_i and no $\bar{b} \in A$, do both $\{\bar{a} \in S_i : A \models \phi[\bar{a}, \bar{b}, R]\}$ and $\{\bar{a} \in S_i : A \models \neg \phi[\bar{a}, \bar{b}, R]\}$ *contain* $m_1(\phi)$ *pairwise disjoint sequences (we call this property* " $(\phi, m_1(\phi))$ -minimality").

PROOF. By Claim 6B and the compactness theorem, there is an $m_1(\phi) < \omega$ such that we cannot find $A, R \in R_{\psi}(A)$, sequences $\bar{a}^n \in A$ for $n < m_{\psi}(A)$, and a formula $\phi^* \in {\phi(\bar{x}, \bar{y}, r), \neg \phi(\bar{x}, \bar{y}, r)}$ such that for each $n < m_i(\phi)$, $\wedge_{m \le n} [\phi^*(\bar{x}, \bar{a}^m, R)]$ $\Lambda \cap \phi^*(\bar{x}, \bar{a}^n, R)$ is satisfied by $\geq m_1(\phi)$ pairwise disjoint sequences.

Now let η denote a sequence of ones and zeros. Define by induction on l, sequences $\bar{a}_n l(\eta) \leq l$ and formulae $\chi_n = \chi_n(\bar{x}, \bar{b}_n, R)$.

For $l = 0$, η the empty sequence, $\chi_n = (\forall x)(x = x)$.

Suppose we have made the definitions for *l*; let us do so for $l + 1$. Let $l(\eta) = l$. If there is an $\bar{a}_n \in A$ such that both $\chi_n(\bar{x}, \bar{b}_n R) \wedge \phi(\bar{x}, \bar{a}_n, R), \chi_n(\bar{x}, \bar{b}_n, R) \wedge \neg \phi(\bar{x}, \bar{a}_n, R)$ are satisfied by $\geq m_1(\phi)$ pairwise disjoint sequences, then choose such \bar{a}_n ; otherwise choose \bar{a}_n arbitrarily.

Then if $l(\eta) = l + 1$, define $\chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R)$ as follows: $\eta = \langle i(1), \dots, i(l + 1) \rangle$; then if $i(l + 1) = 0$,

$$
\chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R) = \chi_{\langle i(1), \dots, i(l)\rangle}(\bar{x}, \bar{b}_{\langle i(1), \dots, i(l)\rangle}, R) \wedge \phi(\bar{x}, \bar{a}_{\langle i(1), \dots, i(l)\rangle}, R)
$$

and if $i(l + 1) = 1$, it is the same with $\neg \phi$ instead of ϕ .

By the definition of $m_1(\phi)$, if, e.g., $l(\eta)=2m_1(\phi) +2$, then $\chi_n(\bar{x}, \bar{b}_n, R)$ is ($\phi, m_1(\phi)$)-minimal. Clearly the $\chi_n(\bar{x}, \bar{b}_n, R)$, $l(\eta) = 2m_1(\phi) + 2$ form a partition; and the choice of $\chi_n(\bar{x}, z, r)$ does not depend on the particular model. Thus Claim 6C is proved.

CLAIM 6D. Suppose Q_{II} is not interpretable by Q_{ψ} . If A is an infinite $R \in R_{\psi}(A), B \subseteq A, \bar{a}, \bar{b} \in A$, and \bar{a} is pseudo-algebraic over $B \cup \{\cdots, \bar{b}_i, \cdots\}$ but *not over B, then* \bar{b} *is pseudo-algebraic over B* \cup { \cdots , \bar{a}_i , \cdots }.

PROOF. Suppose the conclusion fails. There are $\tilde{c} \in B$, and $\phi(\bar{x}, \bar{y}, \bar{z}, r)$ such that $A \models \phi[\bar{a}, \bar{b}, \bar{c}, R]$, and $\phi(\bar{x}, \bar{b}, \bar{c}, R)$ is pseudo-algebraic. Say there do not exist m pairwise disjoint sequences in $\phi[A, \bar{b}, \bar{c}, R]$. Let $\theta(\bar{x}, \bar{y}, \bar{z}, R)$ say that $\phi(\bar{x}, \bar{y}, \bar{z}, R)$ and there do not exist m pairwise disjoint sequences in $\phi(A, \bar{y}, \bar{z}, R)$. Since A $\forall \theta[\bar{a}, \bar{b}, \bar{c}, R], \theta[\bar{a}, \bar{y}, \bar{c}, R]$ is not pseudo-algebraic. For each $n < \omega$, let $\chi_n(\bar{x}, \bar{z}, R)$ say that there are *n* disjoint sequences \vec{d} such that $\theta(\bar{x}, \vec{d}, \bar{z}, R)$ is satisfied. Thus $A \models \chi_n[\bar{a}, \bar{c}, R]$ for all n, and hence $\chi_n(\bar{x}, \bar{c}, R)$ is not pseudo-algebraic.

Now, by the compactness theorem, we can assume that there are \vec{a}^i , $\vec{b}^{i,j} \in A$ for $i, j < \omega$ such that

$$
A \models \theta[\bar{a}^i, \bar{b}^{i,j}, \bar{c}, R] \text{ for all } i, j,
$$

and \tilde{a}^k , \tilde{a}^l (likewise $\tilde{b}^{i,k}$, $\tilde{b}^{i,l}$) are disjoint for $k \neq l$. By rejecting some $\tilde{b}^{i,j}$, we can assume that $b^{i,j}$, $b^{k,l}$ are disjoint unless $\langle i,j \rangle = \langle k,l \rangle$, and also that

$$
A \models \theta[\bar{a}^i, \bar{b}^{j \cdot k}, \bar{c}, R] \equiv \theta[\bar{a}^i, \bar{b}^{j \cdot l}, \bar{c}, R]
$$

when $i \leq j$. Further, by Ramsey's theorem, we arrange that the truth value of $\theta[\bar{a}^i, \bar{b}^{j,k}, \bar{c}, R]$ for $i < j$ is independent of *i,j.*

Now since there are no *m* pairwise disjoint sequences in $\theta[A, \bar{b}^{m,0}, \bar{c}, R]$, it follows that for all *i,j, k,* with $i \leq j$, $A \models \theta[a, b^{j,k}, c, R]$ if and only if $i = j$. Thus we get a contradiction as in Claim 6B.

CLAIM 6E. If $\bar{a} = \langle \bar{a}_1, \dots, \bar{a}_n \rangle$ is pseudo-algebraic over $B \subseteq A$ in (A, R) , then *some* a_i *is algebraic over B in* (A, R) *.*

PROOF. Since \vec{a} is pseudo-algebraic over B, there is a pseudo-algebraic $\phi(\bar{x}, \vec{b}, R)$ $(\bar{b} \in B)$, $A \models \phi[\bar{a}, \bar{b}, R]$. Hence there is a finite set $C = \{c_1, \dots, c_n\}$ such that for any $\tilde{a}^1 \in A$, $A \models \phi[\tilde{a}^1, \tilde{b}, R]$ implies $\{\tilde{a}_1^1, \cdots\}$ and C are not disjoint. Without loss of generality n is minimal. Let

$$
\theta^1(z_1, \dots, z_n, \bar{y}, r) = (\forall \bar{x}) \left[\phi(\bar{x}, \bar{y}, r) \to \bigvee_{i,j} \bar{x}_i = z_j \right]
$$

$$
\theta^2(z, \bar{y}, r) = (\exists z_2, \dots, z_n) \theta^1(z, z_2, \dots, z_n, r).
$$

Clearly for some *i*, $A \models \theta^2[\bar{a}_i, \bar{b}, R]$. As in Claim 4C we can show that $\theta^2(z, \bar{b}, R)$ is algebraic.

CLAIM 6F. *Assume* Q_{II} is not interpretable by Q_{ψ} . Let $R \in R_{\psi}(A)$, and for every *formula* ϕ *, let* $\chi_{\phi,i}$ *i* = 1, \cdots *, m*(ϕ)*,* \bar{c}^{ϕ} *be as in Claim 6C. Let* $C = {\bar{c}^{\phi}}$ *i*; ϕ *, i*} \cup {*elements algebraic over some* \bar{c}^b }.

If \bar{a} *,* $\bar{b} \in A$ *,* $l(\bar{a}) = l(\bar{b}) = n$ *and if the following conditions are met:*

1) *if* $\bar{a}_i, \dots, \bar{a}_{i_l}$ are algebraic over $C \cup \{\bar{a}_{i_l}\}\$, then $\langle \bar{a}_{i_1}, \dots, \bar{a}_{i_l}\rangle$, $\langle \bar{b}_{i_1}, \dots, \bar{b}_{i_l}\rangle$ *realize the same type over C in* (A, R) ,

2) *as in* (1), *interchanging* \tilde{a} , \tilde{b} ,

then \tilde{a} *,* \tilde{b} *realize the same type over C.*

PROOF. We prove by induction on *n*.

For $n = 1$, (1) for $l = 1$ is the conclusion.

Suppose we have proved the claim for *n*; we shall prove it for $n + 1$. Let $\phi = \phi(x, \bar{y}, \bar{z}, r)$ be a formula, $\bar{c} \in C$.

If each \bar{a}_i is algebraic over \bar{a}_1 we are finished. By renaming the \bar{a}_i 's we can

assume that $\bar{a}_2, \dots, \bar{a}_l$ are algebraic over $C \cup \{a_1\}$, but $a_{l+1}, \dots, \bar{a}_{n+1}$ are not; $l \leq n$. Let

$$
\tilde{a}^1 = \langle \tilde{a}_1, \cdots, \tilde{a}_i \rangle, \ \tilde{a}^2 = \langle \tilde{a}_{i+1}, \cdots, \tilde{a}_{n+1} \rangle,
$$

$$
\tilde{b}^1 = \langle \tilde{b}_1, \cdots, \tilde{b}_i \rangle, \ \tilde{b}^2 = \langle \tilde{b}_{i+1}, \cdots, \tilde{b}_{n+1} \rangle.
$$

By (1) and (2), $\bar{b}_2,\dots,\bar{b}_l$ are algebraic over \bar{b}_1 , but $b_{l+1},\dots,\bar{b}_{n+1}$ are not. By Claim 6E, \tilde{a}^2 , \tilde{b}^2 are not pseudo-algebraic over, respectively, $\tilde{a}^1 \cup C$, $\tilde{b}^1 \cup C$.

We must prove that for any $\bar{c} \in C$, $\phi(\bar{x}, \bar{y}, \bar{z}, r)$, $A \models \phi[\bar{a}^1, \bar{a}^2, \bar{c}, R] \equiv \phi[\bar{b}^1, \bar{c}^2, \bar{c}^2]$ \bar{b}^2 , \bar{c} , R]. By the induction hypothesis, \bar{a}^i , \bar{b}^i realize the same type over C. Now we apply the definition of \bar{c}^{ψ} for $\psi(\bar{y}, \bar{x}, \bar{z}, R) = \phi(\bar{x}, \bar{y}, \bar{z}, R)$ (see Claim 6C).

By Claim 6C (1) there is an *i* such that $A \models \chi_{\psi,i} [\bar{a}^2, \bar{c}^{\psi}, R]$.

By Claim 6C (2) one of

$$
\chi_{\psi,i}(\bar{y},\bar{c}^{\psi},R) \wedge \phi(\bar{a}^{1},\bar{y},\bar{c},R)
$$

$$
\chi_{\psi,i}(\bar{y},\bar{c}^{\psi},R) \wedge \neg \phi(\bar{a}^{1},\bar{y},\bar{c},R)
$$

(w.l.o.g. the second), is not satisfied by $\geq m_1(\psi)$ pairwise disjoint sequences. As \bar{a}^2 is not pseudo-algebraic over $\bar{a}^1 \cup C$, clearly

$$
A \models \phi[\bar{a}^1, \bar{a}^2, \bar{c}, R].
$$

Since \bar{a}^2 and \bar{b}^2 have the same type over C, $A \models \chi_{\psi,i}[\bar{b}^2, \bar{c}^{\psi}, R]$, and since \bar{a}^1, \bar{b}^1 have the same type over *C*, $\chi_{\psi,i}[\bar{y},\bar{c}^{\psi},R] \wedge \neg \phi(\bar{b}^1,\bar{y},\bar{c}^{\psi},R)$ is not satisfied by $\geq m_1(\psi)$ pairwise disjoint sequences. Hence the above reasoning gives that

$$
A \models \phi[\bar{b}^1, \bar{b}^2, \bar{c}, R]
$$

which completes the proof.

CLAIM 6G. Suppose Q_{II} cannot be interpreted by Q_{ψ} . Then there are $n_0, n_1 < \omega, \phi(x, y, \bar{z}, r), \chi_i(\bar{x}^i, \bar{z}, r)$ $i < n_1$ $l(\bar{x}^i) = n^i$ such that $(\exists^{\leq n_0} x) \phi(x, y, \bar{z}, r)$ and $\phi(x, x, \bar{z}, r)$ and $(\exists^{\leq n_1} y)\phi(x, y, \bar{z}, r)$ hold and for any $A, R \in R_u(A)$ there is a $\bar{c} \in A$, such that if $\bar{a}, \bar{b} \in A$ ($\bar{l}a$) = $\bar{l}(\bar{b}) = n(\psi)$ and if the following conditions are *met*

1) if $\dagger \phi[\bar{a}_i,\bar{a}_i,\bar{c},R]$ for $l=2,\dots,k$ and $n^i=k$ then $A \dagger \chi_i[\bar{a}_i,\dots,\bar{a}_i,\bar{c},R]$ $\equiv \chi_i[\bar{b}_i, \cdots, \bar{b}_i, \bar{c}, R],$

2) *as in* (1), *interchanging* \bar{a} *and* \bar{b} , then $A \models r[\bar{a}] \equiv r[\bar{b}].$

PROOF. It follows from Claim 6D and 6F and the compactness theorem. (Note that in Claim 6F, we can choose any \bar{c}^{ϕ} , as long as it satisfies a first-order condition which expresses (1), (2), and (3) of Claim 6C, when we are interested in the formula $r(\bar{x})$ only. We can have one ϕ because the disjunction of algebraic formulae is algebraic and if a is algebraic over B, then for some $n, \phi, \bar{b} \in B$, $A \models (\exists^{\leq n} x) \phi(x, \bar{b}, R)$; hence a satisfies $\theta^1(x, \bar{b}, R) = (\exists^{\leq n} y) \theta(y, \bar{b}, R) \wedge \theta(x, \bar{b}, R)$, and $(\exists^{m} x)\theta^1(x, \bar{b}, R)$ holds.)

PROOF OF LEMMA 6. Assume Q_{II} cannot be interpreted by Q_{ψ} , and we shall interpret Q_{μ} by Q_{μ} . We use the results and notation of Claim 6G.

Call a, b n-connected (in (A, R) , $R \in R_u(A)$, \bar{c} as in Claim 6G if there are $a = c^0$, $c^2, \dots, c^n = b$ such that $A \models \phi[c^i, c^{i+1}, c, R] \lor \phi[c^{i+1}, c^i, c, R]$ for $1 \le i < n$. By the remark above, the number of b's n-connected to a is $\leq k(n) < \omega$ (k(n) depends only on ϕ , ψ and *n*).

Now choose inductively $A_n \subseteq A$, $n \ge 1$ such that A_n is a maximal subset of $A - \bigcup_{i \leq n} A_i$ with no two 2-connected elements. For $n \geq k(2) + 2$, A_n is empty, because if $a \in A_n$, then by the definition of A_i , $(i < n)$ there is a $b_i \in A_i$ such that a, b_i are 2-connected. So $> k(2)$ elements are two-connected to A, a contradiction. Now for any $a \neq b \in A_n$, $\phi(A, a, \bar{c}, R)$, $\phi(A, b, \bar{c}, R)$ are disjoint (because if c is in the intersection, then c, a and c, b are 1-connected, hence a, b are 2-connected).

Now it is clear how to define r by permutations and sets. By dividing the A_i 's according to $|\phi(A, a, \bar{c}, R)|$, we get $A = \bigcup_{i \le m} A_i$, $a \ne b \in A_i$ implies $\phi(A, a, \bar{c}, R)$ $\bigcap \phi(A, b, \bar{c}, R) = \emptyset$, and $\big|\phi(A, a, \bar{c}, R)\big| = m(i)$. For each i choose permutations of order two $f_1^i, \dots, f_{m(i)}^i$ such that

$$
\phi(A, a, \overline{c}, R) = \{f_i^i(a): 1 \leq j \leq m(i)\}.
$$

In view of Claim 6G, we thus represent $R[\in R_{\psi}(A)]$ by the permutations f_i^i , the sets A_i , and the additional sets

$$
A_{i,k,l_1...} = \{a \in A_i : A \models \chi_k[f_{l_1}^i(a),...,R]\}.
$$

In fact there are only finitely many such possible representations, so by adding a sequence of elements, we can encode, by equalities, the proper case.

REFERENCES

1. Bell, J. L. and A. B. Slomson, *Modsls and Ultraproducts,* North Holland, 1969.

2. P. Erd6s and R. Rado, *Intersection theorems for systems of sets,* J. London Math. Soc. 44 (1969), 467-479.

3. Ju. L. Ershov, *Undecidability of theories of symmetric and simple finite groups,* Dokl. Akad. Nauk SSSR 158, (1964) 777-779.

4. Ju. L. Ershov. *New examples of undecidability of theories,* Algebra i Logika 5 (1966), 37-47.

5. g. McKenzie, *On elementary types of symmetric groups,* Algebra Universalis 1 (1971), 13-20.

6. M. D. Morley and R. L. Vaught, *Homogeneous universal models,* Math. Scand. 11 (1962), 37-57.

7. A. G. Pinus, *On elementary definability of symmetric group and lattices of equivalences,* Algebra Universalis, to appear.

8. M. O. Rabin, *A simple method for undecidability proofs*, Proc. 1964 Int. Congress for Logic, North Holland, 1965, pp. 58-68.

9. F. D. Ramsey, *On aproblem offormal logic,* Proc. London Math. Soc. 30 (1929), 338-384.

10. S. Shelah, *There are just four possible second-order quantifiers and on permutation groups,* Notices Amer. Math. Soc. 19 (1972), A-717.

11. S. Shelah, *First order theory of permutations groups,* Israel J. Math. 14 (1973), 149-162; and *Errata to "First order theory of permutations groups",* Israel J. Math. 15 (in press).

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL