THERE ARE JUST FOUR SECOND-ORDER QUANTIFIERS

BY SAHARON SHELAH

ABSTRACT

Among the second-order quantifiers ranging over relations satisfying a first-order sentence, there are four for which any other one is bi-interpretable with one of them: the trivial, monadic, permutational, and full second order.

Introduction

The problem of elementary theories of permutation groups was discussed in Vazhenin and Rasin [12], McKenzie [5], Pinus [7], and essentially solved in Shelah [11]. It became clear that this is equivalent to the problem of the expressive power of the quantifier Q_P , ranging over permutations. (Of course in rich enough languages it is equivalent to the second-order quantifier, so the interesting case is of languages with no nonlogical symbols.) After examining [11], J. Stavi doubted the naturality of this quantifier, whereas I was convinced that there are no new quantifiers of this kind. At last he suggested, as explication of "this kind", the family of quantifiers Q_{ψ} , where $\psi = \psi(r)$ is a first-order sentence with the single predicate r, and $(Q_{tt}r)\phi$ means: "There is a relation r satisfying ψ such that ϕ ''..... Here we prove that up to bi-interpretability there are really only four such quantifiers. It seems that this justifies the preoccupation with Q_P . We define interpretability in a way even weaker than in [11]: Q_{ψ} , is interpretable in Q_{ψ} , if there is a first-order formula $\theta(\bar{x}, y_1, \dots, r_1, \dots)$ such that for any infinite set A, and relation R over it, $A \models \psi_1[R]$, there are elements $a_1, \dots \in A$ and relations S_1, \dots over $A, A \models \psi_2[S_i]$, such that $A \models (\forall \bar{x}) [R(\bar{x}) \equiv \theta(\bar{x}, a_1, \dots, S_1, \dots)]$.

Our proofs give somewhat more than what is required. If Q_X is one of those four quantifiers (see Theorem 2 for details) and Q_{ψ} , Q_X are bi-interpretable, then

Received October 11, 1972 and in revised form March 5, 1973.

there is a $\theta(\bar{x}, \bar{y}, r_1, \dots, r_n)$ interpreting Q_X by Q_{ψ} with bounded n (that is the bound on n is absolute). No attempt has been made to determine a minimal bound, but notice that if Q_{ψ} , Q_M are bi-interpretable (Q_M —the monadic quantifier) then by Claim 5H, some $\theta(x, y, r)$ interprets Q_M by Q_{ψ} .

There are several ways in which we can try to generalize our results and most directions were not investigated.

We can quantify over a pair of relations, e.g. two operations defining a field; but this can be reduced to the previous case.

We can permit finite models, but then we can find a quantifier very strong for models with an even number of elements, and trivial for models with an odd number of elements.

We can have quantifiers ranging over pseudo-elementary classes. That is, $(Q_{\psi(r,s)}r)$..., means "there is an r such that for some s, $\psi(r,s)$ holds, and r satisfies ...". In this case, our proofs give similar classification, but the equivalence classes of Q_M , Q_P are divided into infinitely many equivalence classes. It is not so difficult to give a complete picture. If we want to find which cardinals can be characterized by a sentence with such quantifiers but with no nonlogical symbol, we are stuck by the independence of, e.g., the function 2^{\aleph_x} .

Another direction is multi-sorted models. Here the classification depends on n-cardinal theorems (see e.g. [1]) but modulo these, it seems possible to give a classification.

Still another direction is to replace first-order logic by the infinitary logic $L_{\omega_1,\omega}$ (or $L_{\lambda,\omega}$). Here it is reasonable to ignore models of cardinality $< \beth_{\omega_1}$. In this case we have a quantifier Q_{II}^{λ} ranging over all two-place relations of cardinality $< \lambda$, where there is $\psi \in L_{\omega_1,\omega}$ which has a model of cardinality μ iff $\mu < \lambda$. We also have the quantifiers ranging over equivalence relations with $< \lambda$ equivalence classes or with equivalence classes of power $\leq \mu < \lambda$ for some μ , where λ satisfies the condition mentioned for Q_{II}^{λ} . It is easy to define when a quantifier Q_{ψ} is interpretable by a set of quantifiers and hence when a quantifier and set of quantifiers, or two such sets, are bi-interpretable.

Conjecture. Any Q_{ψ} is bi-interpretable with a finite set consisting of quantifiers mentioned above.

The following conjecture seems to imply all others. Let A be a fixed infinite set. For each m-place relation R over A define " $(Q_R r)$ …" to mean "there is a relation r over A, $(A,R) \cong (A,r)$ such that…"

Conjecture. Any quantifier $(Q_R r)$ is bi-interpretable with a finite set of quantifiers $\{(Q_E, r): i < n\}$ where E_i is an equivalence relation over A.

NOTATION. Let r,s,t denote predicates (= variables over relations); R,S,T (the corresponding) relations; x,y,z individual variables; and a,b,c,d elements. A bar on any one of them means that it is a finite sequence of this sort. Let ϕ,ψ,θ,χ denote formulae, first-order if not stated otherwise. $\phi=\phi(x_1,\cdots,r_1,\cdots)$ means that x_1,\cdots include all the free variables of ϕ , and r_1,\cdots include all the predicates in ϕ . L denotes first-order language (always with equality). Let $\psi=\psi(r)$ always, r have $n(\psi)$ places, and $L_{\psi}=L(Q_{\psi})$ be language L with the added second-order quantifier $(Q_{\psi}r)\cdots$ which means "there is an r which satisfies ψ such that…". Let $R_{\psi}(A)=\{R\colon R$ an $n(\psi)$ -ary relation over $A, A\models\psi[R]\}$ (\models denotes satisfaction). Let $(Q_{\psi}\bar{r})$ mean $(Q_{\psi}r_1)\cdots(Q_{\psi}r_n)$, where $\bar{r}=\langle r_1,\cdots,r_n\rangle$. We shall write $\bar{a}\in A$ instead of $\bar{a}=\langle a_1,\cdots,a_n\rangle, a_i\in A$. For any $\bar{a}, l(\bar{a})$ is its length, and \bar{a}_i or a_i its i'th element, so $\bar{a}=\langle a_1,\cdots,a_{l(\bar{a})}\rangle$.

Let i,j,k,l,m,n range over natural numbers, $i,j,\alpha,\beta,\gamma,\delta$ over ordinals, and λ,μ,κ over cardinals.

A sequence \bar{a} is without repetitions if $i \neq j$ implies $\bar{a}_i \neq \bar{a}_j$, and \bar{a}, \bar{b} are disjoint if $\bar{a}_i \neq \bar{b}_j$ for any i,j. Let Eq_{λ}(A) [Eq^{*}_{λ}(A)] be the set of equivalence relations over A, with each equivalence class having $< \lambda[\lambda]$ elements. Let e denote an equivalence relation.

DEFINITION 1. Q_{ψ_1} is interpretable in Q_{ψ_2} if there is a formula $\phi(\bar{x}, \bar{y}, \bar{r})$, $l(\bar{x}) = n(\psi_1)$ such that for any infinite A and $R_1 \in R_{\psi_1}(A)$ there are $\bar{a} \in A$, $\bar{R} \in R_{\psi_2}(A)$ such that

$$A \models (\forall \bar{x}) [R_1(\bar{x}) \equiv \phi(\bar{x}, \bar{a}, \bar{R})].$$

DEFINITION 2. Q_{ψ_1} and Q_{ψ_2} are equivalent if each is interpretable in the other.

LEMMA 1. If Q_{ψ_1} is interpretable in Q_{ψ_2} , then there is a recursive function F from the formulae of any language L_{ψ_1} into those of L_{ψ_2} such that for any infinite model M and sentence $\theta \in L_{\psi_1}$ (not necessarily first-order)

$$M \models \theta \text{ iff } M \models F(\theta).$$

PROOF. We define $F(\theta)$ for formulae θ , by induction on θ . The only nontrivial case is $\theta = (Q_{\psi_1} r) \chi$. Without loss of generality no variable occurs both in θ and in the interpreting formula ϕ (otherwise change names). Replace in $F(\chi)$ and in

 ψ_1 every occurrence of $r(\bar{z})$ by $\phi(\bar{z}, \bar{y}, \bar{r})$, call the results χ^*, ψ_1^* and let $F(\theta) = (\exists \bar{y}) (Q_{\psi}, \bar{r}) (\chi^* \wedge \psi_1^*)$.

Our main result is

Theorem 2. Each Q_{ψ} is equivalent to exactly one of the following quantifiers:

- A) Q_I —the trivial quantifier, i.e., Q_{ψ_I} , $\psi_I = r$, $n(\psi_1) = 0$, so L_{ψ_I} is just first-order logic
- B) Q_M —the monadic second-order quantifier, i.e., Q_{ψ_M} , $\psi_M = (\forall x) [r(x) \equiv r(x)]$, $n(\psi_M) = 1$,
- C) Q_p —the permutational second-order quantifier, ranging over permutations of the universe of order two, i.e. Q_{ψ_p} ,

$$\psi_P = (\forall x) \lceil f(f(x)) = x \rceil$$

(of course we can quantify over functions instead of relations; equivalently we can quantify over $Eq_3(A)$)

D) Q_{II} —the (full) second-order quantifier i.e., $Q_{\psi_{II}}$, $\psi_{II} = (\forall xy) [r(x,y)] \equiv r(x,y)]$, $n(\psi_{II}) = 2$.

The proof is broken into a series of lemmas and claims.

LEMMA 3. Q_I can be interpreted in Q_M , Q_M can be interpreted in Q_P , and Q_P can be interpreted in Q_{II} . However, none of the converses holds. (In fact, in the negative parts, also the conclusion of Lemma 1 fails.)

PROOF. The positive statements are immediate. As for the negative statements, let L be a language with no predicates or function symbols (except equality, of course), and L_{ord} be the language of models of order.

We know that in $L_{ord}(Q_I)$ there is no formula (with parameters) defining the class of well-ordering but that there is one in $L_{ord}(Q_M)$. Hence Q_M cannot be interpreted by Q_I .

We know that for every sentence $\phi \in L(Q_M)$, either every infinite model satisfies it or no infinite model satisfies it. As in McKenzie [5] (or Pinus [7], Shelah [11]) this is not true for $L(Q_P)$, Q_P cannot be interpreted by Q_M .

By Shelah [11], if a sentence $\phi \in L(Q_P)$ has a model of cardinality $\geq \aleph_{\Omega^{\omega}}$ $(\Omega = (2^{\aleph_0})^+)$ then ϕ has models of arbitrarily high power. Of course $L(Q_{II})$ does not satisfy this, hence Q_{II} is not interpretable by Q_P .

LEMMA 4. If Q_{ψ} is not interpretable by Q_I then Q_M is interpretable by Q_{ψ} .

CLAIM 4A. Q_M is interpretable by Q_{ψ} if there is a formula $\phi = \phi(x, \bar{y}, \bar{r})$,

and a set A, $\bar{a} \in A$, $\bar{R} \in R_{\psi}(A)$ such that $\phi(y, \bar{a}, \bar{R})$ divides A into two infinite sets, that is $|\phi(A, \bar{a}, \bar{R})| \ge \aleph_0$, $|\neg \phi(A, \bar{a}, \bar{R})| \ge \aleph_0$, where $\phi(A, \bar{a}, \bar{R}) = \{b \in A : A \models \phi[b, \bar{a}, \bar{R}]\}$.

PROOF OF CLAIM 4A. Assuming the existence of such ϕ , by the compactness and Lowenheim-Skolem theorems, for every infinite B there are $\bar{a} \in B$, $\bar{R} \in R_{\psi}(B)$ such that $|B| = |\phi(B, \bar{a}, \bar{R})| = |\neg \phi(B, \bar{a}, \bar{R})|$. By applying a permutation of B for every $B_1 \subseteq B$, $|B_1| = |B - B_1| = |B|$, there are $\bar{a} \in A$, $\bar{R} \in R_{\psi}(B)$ such that $\phi(B, \bar{a}, \bar{R}) = B_1$. Now for every $C \subseteq B$ there are $B_i \subseteq B$ $i = 1, \dots, 4$ such that $|B_i| = |B - B_i| = |B|$ and $C = (B_1 \cap B_2) \cup (B_3 \cap B_4)$. Let

$$\theta = \theta(x, \bar{y}^*, \bar{r}^*) = \left[\phi(x, \bar{y}^1, \bar{r}^1) \land \phi(x, \bar{y}^2, \bar{r}^2)\right] \lor \left[\phi(x, \bar{y}^3, \bar{r}^3) \land \phi(x, \bar{y}^4, \bar{r}^4)\right].$$

Then as the \tilde{a}_i^* range over B, and the \bar{R}_i^* range over $R_{\psi}(B)$, $\theta(B, \bar{a}^*, \bar{R}^*)$ ranges over the subsets of B.

DEFINITION 3.

- A) The sequences \bar{a}^1 , \bar{a}^2 are similar over B if $\bar{a}^i = \langle \cdots, \bar{a}^i_j, \cdots \rangle_{j < k}$ and (i) $a^1_i = a^1_i$ iff $a^2_i = a^2_i$; (ii) for $b \in B$, $a^1_i = b$ iff $a^2_i = b$.
 - B) The sequences \bar{a}^1 , \bar{a}^2 are similar over \bar{b} iff they are similar over $\{\cdots, \bar{b}_i, \cdots\}$.

CLAIM 4B. If Q_M is not interpretable by Q_{ψ} then for every formula $\phi(\bar{x}, \bar{y}, \bar{r})$ there is a formula $\theta(z, \bar{y}, \bar{r})$ and $n < \omega$ such that for any $A, \bar{b} \in A, \bar{R} \in R_{\psi}(A)$

- (i) $A \models (\exists^{\leq n} z) \theta(z, \bar{b}, \bar{R}) \text{ that is } |\theta(A, \bar{b}, \bar{R})| \leq n$
- (ii) if \tilde{a}^1 , \tilde{a}^2 are similar over

$$\{\cdots, \bar{b}_i, \cdots\} \cup \theta(A, \bar{b}\,\bar{R}) \text{ then } A \models \phi(a^{-1}, \bar{b}, \bar{R}) \equiv \phi(\bar{a}^2, \bar{b}, \bar{R}).$$

REMARK. In the induction step, only the validity of our claim for the previous case is needed.

PROOF OF CLAIM 4B. We shall prove it by induction on $l(\bar{x})$.

For $l(\bar{x}) = 1$ by Claim 4A (and compactness) for some m,

$$\theta_m = \left[(\exists^{\leq m} x) \phi(x, \bar{y}, \bar{r}) \to \phi(z, \bar{y}, \bar{r}) \right] \land \left[(\exists^{\leq m} x) \neg \phi(x, \bar{y}, \bar{r}) \to \neg \phi(z, \bar{y}, \bar{r}) \right]$$
satisfies our demands.

Suppose we have proved it for $l(\bar{x}) \leq l$, and we shall prove it for the case $l(\bar{x}) = l+1$. Choose any A, $\bar{b} \in A$, $\bar{R} \in R_{\psi}(A)$ and $\bar{x} = \langle x_1, \cdots, x_{l+1} \rangle$, $\bar{x}^1 = \langle x_1, \cdots, x_l \rangle$, $\bar{y}^1 = \langle x_{l+1}, \bar{y}_1, \cdots \rangle$. For $\phi(\bar{x}^1, \bar{y}^1, \bar{r})$ we have proved the claim, and let $\theta(z, \bar{y}^1, \bar{r})$, n be as mentioned there. Now for any $a \in A$ let $Ex(a) = \theta(A, a, \bar{b}, \bar{R}) - \{a, \cdots, \bar{b}_i, \cdots\}$. Thus $|Ex(a)| \leq n$ always.

Let us show that $\bigcup_{a \in A} Ex(a)$ is finite. If not, define by induction on $i < \omega$, $a_i \in A - \{a_j : j < i\}$, c_i such that $Ex(a_i) \not = \bigcup_{j < i} Ex(a_j)$, and $c_i \in Ex(a_i) - \bigcup_{j < i} Ex(a_j)$. By Ramsey's theorem we can assume (by replacing the sequence of a_i 's and c_i 's by a subsequence) that the truth value of $c_i \in Ex(a_j)$ depends only on whether i = j, i < j or i > j. Clearly $c_i \in Ex(a_i)$, and for j > i, $j < \omega$, $c_j \notin Ex(a_i)$. Since $|Ex(a_j)| \le n$, clearly there is an i < n + 2 such that $c_i \notin Ex(a_{n+2})$. Hence $c_i \in Ex(a_j)$ iff i = j. Similarly $c_i = c_j$ iff i = j; and $a_i \ne c_j$. As the a_i 's and c_i 's are distinct, we can assume that none of them appear in \bar{b} . Let f be a permutation of f which interchanges f with f and takes the other elements of f to themselves. Let f be the image of f by f (so f is an isomorphism from f and f to f takes the set f be the integral of f by f (so f is an isomorphism from f and f is f takes the set f and f is f and f and f and f is divisible by three; thus

$$\chi(y, \bar{b}, \bar{R}, \bar{R}^*) = (\forall x) \left[\theta(x, y, \bar{b}, \bar{R}) \equiv \theta(x, y, \bar{b}, \bar{R}^*) \right]$$

satisfies the conditions mentioned in Claim 4A, a contradiction. Hence $C = \bigcup_{a \in A} Ex(a)$ is finite. Let $C = \{c_1, \dots, c_j\}$, $\bar{c} = \langle c_1, \dots, c_j \rangle$.

DEFINITION 4. Let us call $\chi(\bar{z})$ complete if it is a conjunction such that for every $i, j, z_i = z_j$ or $z_i \neq z_j$ is a conjunct (and all the conjuncts are of this form).

Let $\chi_i(\bar{x}^1, x, \bar{y}, \bar{z})$ $i = 1, \dots, k$ be a list of all complete formulae in the displayed variables. By definition of Ex for every i, and $a \in A$

(i)
$$A \models (\forall \bar{x}^1) \left[\chi_i(\bar{x}^1, a, \bar{b}, \bar{c}) \rightarrow \phi(\bar{x}^1, a, \bar{b}, \bar{R}) \right]$$

or

(ii)
$$A \models (\forall \bar{x}^1) \left[\chi_\iota(\bar{x}^1, a, \bar{b}, \bar{c}) \rightarrow \neg \phi(\bar{x}^1, a, \bar{b}, \bar{R}) \right].$$

For each a let I(a) be the set of i's for which (i) holds.

By Claim 4A, except for finitely many a's, all I(a) are equal (to I). Let C^1 be the set of exceptional a's. It is easy to check that:

(*) if \bar{a}^1, \bar{a}^2 are similar over $C^2 = \{\cdots, \bar{b}_i, \cdots\} \cup C \cup C^1$, then $A \models \phi[\bar{a}^1, \bar{b}, \bar{R}] \equiv \phi[\bar{a}^2, \bar{b}, \bar{R}]$; C^2 is finite.

Without loss of generality we cannot replace C^2 by a set of smallest cardinality satisfying (*). Let $n_1 = |C^2|$, and let $\theta_1 = \theta_1(z, \bar{y}, \bar{r})$ say that there are z_2, \dots, z_{n_1} , such that if \bar{x}^1, \bar{x}^2 are similar over $\{z, z_2, \dots, z_{n_1}, \dots, \bar{y}_i, \dots\}$, then $\phi(\bar{x}^1, \bar{y}, \bar{r}) \equiv \phi(\bar{x}^2, \bar{y}, \bar{r})$.

SUBCLAIM 4C. $\theta_1(A, \tilde{b}, \bar{R})$ is finite.

PROOF OF SUBCLAIM 4C. If not, there are distinct C_i^2 , $i < \omega$ satisfying (*), $|C_i^2| = n_1$.

Now w.l.o.g. there is a C^* , $|C^*| < n_1$, such that for any $i < j < \omega$, $C_i^2 \cap C_j^2 = C^*$; this follows by Erdös and Rado [2], but we can also prove it directly. Let $C_i^2 = \{c_{i,1}^2, \dots, c_{i,n_1}^2\}$, and by Ramsey's theorem [9] there is an infinite $I \subseteq \omega$, such that for $1 \le l, k \le n_1$, $i < j \in I$, the truth value of $c_{i,l}^2 = c_{j,k}^2$ does not depend on the particular i, j. Without loss of generality $I = \omega$. Let

$$C^* = \{c_{0,k}^2 : c_{0,k}^2 = c_{1,k}^2, 1 \le k \le n_1\}.$$

By definition of I, $C^* \subseteq C_i^2$ for every i. As $C_0^2 \neq C_1^2$, $\left| C^* \right| < n_1$. Let $i < j < \omega$. Then clearly $C^* \subseteq C_i^2 \cap C_j^2$; if equality does not hold let $c \in C_i^2 \cap C_i^2 - C^*$. Thus $c = c_{i,k}^2 = c_{j,l}^2$; since i < j, this implies $c_{0,k}^2 = c_{2,l}^2$, $c_{1,k}^2 = c_{2,l}^2$, $c_{0,k}^2 = c_{j,l}^2$. Hence $c_{0,k}^2 = c_{1,k}^2 = c_{j,l}^2 = c$, $c_{0,k}^2 \in C^*$, and $c \in C^*$, a contradiction. So it is proved that w.l.o.g. there is such a C^* , but if \bar{a}^1 , \bar{a}^2 are similar over C^* then they are similar over all C_i^2 except finitely many, and this contradicts the definition of n_1 . Thus Subclaim 4C is proved.

Continuation of the Proof of Claim 4B. Let $|\theta_1(A, \bar{b}, \bar{R})| = n_2$.

So $\theta_1(z, \bar{y}, \bar{r})$, n_2 satisfy the demands in Claim 4B except that they depend on A, \bar{b}, \bar{R} . By the compactness theorem there are $\theta^i(z, \bar{y}, \bar{r})$, n^i $i = 1, \dots, k(<\omega)$ such that for any $A, \bar{b} \in A$, $\bar{R} \in R_{\psi}(A)$ there is an i such that θ^i , n^i satisfy the demands of the claim. Let $\theta^* = \theta^*(z, \bar{y}, \bar{r}) = \bigvee_i [(\exists^{\leq n^i} u) \ \theta^i(u, \bar{y}, \bar{r}) \land \theta^i(z, \bar{y}, \bar{r})]$. Clearly this is the right one, so Claim 4B is proved.

PROOF OF LEMMA 4. Assume Q_M is not interpretable by Q_{ψ} . Use Claim 4B for $\phi(\bar{x},r)=r(\bar{x})$, and let θ,n be the θ,n whose existence is proved there. Let $\chi_i(\bar{x},\bar{z})$ $(l(\bar{z})=n)$ $i=1,\cdots,k$ be the complete formulae mentioned in the proof of Claim 4B. Let I_1,\cdots,I_{2^k} be the subsets of $\{1,\cdots,k\}$.

Let

$$\phi^*(\bar{x},\bar{y},\bar{z}) = \bigwedge_{j} [y_{2j} = y_{2j+1} \to \bigvee_{i \in Ij} \chi_i(\bar{x},\bar{z})].$$

For an infinite A, for every $\bar{R} \in R_{\psi}(A)$ let $\{c_1, \dots, c_n\} \supseteq \theta(A, \bar{R})$.

Let $I = \{i: (\exists \bar{x}) [\chi_i(\bar{x}, \bar{c}) \land r(\bar{x})]\}$, j be such that $I = I_j$. Define \bar{b} such that $\bar{b}_{2p} = \bar{b}_{2p+1}$ iff p = j. Then

$$A \models \phi^*(\bar{x}, \bar{b}, \bar{c}) \equiv r(\bar{x}),$$

a contradiction. Thus Lemma 4 is proved.

Lemma 5. If Q_{ψ} is not interpretable by Q_{M} then Q_{P} is interpretable by Q_{ψ} .

PROOF. Clearly Q_{ψ} is a *fortiori* not interpretable by Q_{I} , hence by Lemma 4, Q_{M} is interpretable by Q_{ψ} .

CLAIM 5A. Q_P is interpretable by Q_{ψ} if there is a formula $\phi(x,y,\bar{z},\bar{r})$, a set $A, \bar{c} \in A, \bar{R} \in R_{\psi}(A), B \subseteq A$ such that $\phi(x,y,\bar{c},\bar{R})$ defines on B an equivalence relation with infinitely many equivalence classes with ≥ 2 elements.

PROOF OF CLAIM 5A. The proof is similar to that of Claim 4A. By replacing B by a subset, we may assume that each equivalence class has exactly two elements and that A-B is infinite. Now for every infinite A, by the compactness and the Lowenheim-Skolem theorems, there are $B\subseteq A$, $\bar{a}\in A$, $\bar{R}\in R_{\psi}(A)$, such that |B|=|A-B|=|A|, and $\phi(x,y,\bar{a},\bar{R})$ defines on B a relation $\in \operatorname{Eq}_2^*(B)$. We can easily find $\bar{b}\in A$, $\bar{S}\in R_{\psi}(A)$ such that $\phi(x,y,\bar{b},\bar{S})$ defines on A-B an equivalence relation from $\operatorname{Eq}_2^*(A-B)$. Also there is a formula $\phi^*(x,\bar{c},\bar{T})$ $\bar{c}\in A$, $\bar{T}\in R_{\psi}(A)$, which defines B. So

$$\theta(x, y, \bar{a}, \bar{b}, \bar{c}, \bar{R}, S, \bar{T}) = \left[\phi^*(x, \bar{c}, \bar{T}) \equiv \phi^*(y, \bar{c}, \bar{T})\right]$$

$$\wedge \left[\phi^*(x, \bar{c}, \bar{T}) \rightarrow \phi(x, y, \bar{a}, \bar{R})\right] \wedge \left[\neg \phi^*(x, \bar{c}, \bar{T}) \rightarrow \phi(x, y, \bar{b}, S)\right]$$

defines a relation from $Eq_2^*(A)$.

Clearly for every $e \in \text{Eq}_2^*(A)$ there are $\bar{a}', \bar{b}', \bar{c}' \in A, \bar{R}', \bar{S}', \bar{T}' \in R_{\psi}(A)$, such that

$$A \models (\forall xy) [\theta(x, y, \tilde{a}, \cdots) \equiv xey].$$

Since we can interpret Q_M in Q_{ψ} , by a small change in θ we can have the same for $e \in \text{Eq}_3(A)$. This proves the claim.

DEFINITION 5. We call $\phi = \phi(x_1, \dots, x_n, r)$ atomic if $\phi = [x_i = x_j]$ or $\phi = r(x_{i_1}, \dots x_{i_{n(\psi)}})$.

DEFINITION 6. For every $A, B \subseteq A, R \in R_{\psi}(A)$, define the equivalence relation e = e(R, B, A) over B by bec iff $b, c \in B$, and for every atomic $\phi(x_1, \dots, x_n)$ and $a_2, \dots, a_n \in A - B, A \models \phi[b, a_2, \dots, R] \equiv \phi[c, a_2, \dots, R]$.

CLAIM 5B. e(R, B, A) is defined by a formula in A (with R and B as parameters). PROOF. Immediate.

CLAIM 5C. If Q_F is not interpretable by Q_{ψ} , then for every $A, B \subseteq A, R \in R_{\psi}(A)$, e(R, B, A) has finitely many equivalence classes.

PROOF. Suppose e(R, B, A) has infinitely many equivalence classes. By Claim 5A, only finitely many of them have ≥ 2 elements. But if we replace B by a smaller set, e(R, B, A) becomes finer (i.e., the equivalence classes become smaller). Hence

w.l.o.g. each equivalence class of e(R, B, A) has one element, and of course B is infinite.

Let f be a permutation of order two of A, such that $f(a) = a \leftrightarrow a \notin B$. Define

$$R_1 = \{ \langle a_1, \dots \rangle : a_1, \dots \in A, \langle f(a_1), \dots \rangle \in R \}.$$

Let

$$e_1 = \{ \langle c, b \rangle \colon b, c \in B, \text{ for every atomic } \phi(x, \bar{y}, r) \text{ and}$$

every $\bar{a} \in (A - B); A \models \phi[c, \bar{a}, R] \equiv \phi[b, \bar{a}, R_1]$
 $A \models \phi[b, \bar{a}, R] \equiv \phi[c, \bar{a}, R_1] \}.$

It is easy to see that c = f(b), $c, b \in B$ implies $\langle c, b \rangle \in e_1$. It is easy to check that $\langle c, b \rangle \in e_1$ implies $\langle c, f(b) \rangle \in e(R_1, B, A)$ but this implies c = f(b).

Hence $[\langle x, y \rangle \in e_1] \lor x = y$ defines an equivalence relation of Eq₂*(B), and clearly it is definable by a formula. By Claim 5A this leads to a contradiction, hence 5C is proved.

CLAIM 5D. If Q_P is not interpretable by Q_{ψ} , then there is a formula $\phi(x, y, r)$ such that for every $A, R \in R_{\psi}(A)$.

- (i) $\phi(x, y, R)$ defines an equivalence relation with finitely many equivalence classes.
 - (ii) $A \models \phi[a,b,R]$ implies that there is a finite B such that $\langle a,b \rangle \in e(R,B,A)$.

PROOF. Define for A, $R \in R_{\psi}(A)$ $n < \omega$ the relation

$$e_n(R, A) = \{\langle c, b \rangle : c, b \in A, \text{ there is } B \subseteq A, |B| \le n\}$$

such that $\langle c, b \rangle \in e(R, B, A)$.

Define $\phi_n(x, y, r)$ such that $A \models \phi_n[c, b, R]$ iff $\langle c, b \rangle \in e_n(R, A)$, $R \in R_{\psi}(A)$. Note that $\phi_{n+1}(x, y, r) \to \phi_n(x, y, r)$ always.

Clearly $e^*(R,A) = \bigcup_{n<\omega} e_n(R,A)$ is an equivalence relation over A. Moreover it has only finitely many equivalence classes. Otherwise choose nonequivalent a_i $1 \le i < \omega$. By Claim 5C and the compactness theorem, there is $n_0 < \omega$ such that $e(R^1,B,A)$ always has $\le n_0$ equivalence classes, for $B \subseteq A$, $R^1 \in R_{\psi}(A)$. Let $B = \{a_i : 1 \le i \le n_0 + 1\}$. Then e(R,B,A) has $n_0 + 1$ equivalence classes (by the choice of the a_i 's and the definition of e^*). We prove in fact that $e^*(R,A)$ has $\le n_0$ equivalence classes for any $R \in R_{\psi}(A)$. Hence in

$$\Gamma = \{ \psi(r) \} \cup \{ \neg \phi_n(x_i, x_j, r) : n < \omega, \ 1 \le i < j \le n_0 + 1 \}$$

there is a contradiction.

Thus for some $n_1 < \omega$ there is a contradiction in

$$\{\psi(r)\} \cup \{\neg \phi_n(x_i, x_i, r) : n < n_1, \ 1 \le i < j \le n_0 + 1\}.$$

The closure of $\phi_{n_1}(x, y, r)$ to an equivalence relation is

$$\phi(x,y,r) = {}^{\mathrm{df}}(\exists z_1,\dots,z_m) \left[\bigwedge_{i=1}^m \phi_{n_i}(z_i,z_{i+1},r) \wedge z_0 = x \wedge z_m = y \right]$$

where $m=3n_0$ is sufficient. This is because for every $A,R\in R_{\psi}(A)$ there is a maximal set $\{a_i\colon 1\le i< i_0\}$ such that $i< j< i_0$ implies $A\models \neg \phi_{n_1}(a_i,a_j,R)$; hence $i_0\le n_0$ by the definition of n_1 . By the maximality of the set, for every $a\in A$ for at least one i $A\models \phi_{n_1}(a,a_i,R)$. Now if b,c are equivalent in the closure of $e_{n_1}(R,A)$ then there are d_1,\cdots,d_m , $d_1=b$, $d_m=c$ and $\langle d_i,d_{i+1}\rangle\in e_{n_1}(R,A)$. Choose such d_i 's with minimal m; we should show $m\le 3n_0$. For this it suffices to prove there are no four d_i from one $\phi_{n_1}(A,a_i,R)$. Let $1\le i_1< i_2< i_3< i_4\le m$, $d_{i_1},\cdots,d_{i_4}\in \phi_{n_1}(A,a_j,R)$. Then $\langle d_{i_1},a_j\rangle,\langle a_j,d_{i_4}\rangle\in e_{n_1}(R,A)$, hence also d_1,\cdots,d_{i_1} , $a_j,d_{i_4}\cdots,d_m$ is a suitable sequence, and it has smaller length, a contradiction.

Since $e^*(R, A)$ is an equivalence relation, it refines the closure of $e_{n_1}(R, A)$. Hence $R \in R_{\psi}(A)$, $A \models \phi[b, c, R]$ implies that there is a finite $B \subseteq A$ such that $\langle b, c \rangle \in e(R, B, A)$.

CLAIM 5E. In Claim 5D we conclude also that there are $\theta(z, x, y, r)$, $n_2 < \omega$ such that for any A, $R \in R_{\psi}(A)$, $b, c \in A$,

- (i) $A \models (\forall xy)(\exists^{\leq n_2}z) \theta(z, x, y, R)$
- (ii) $A \models (\forall xyz) [\theta(z, x, y, R) \rightarrow z \neq x \land z \neq y]$
- (iii) $A \models \phi[b,c,R]$ implies $\langle b,c \rangle \in e(R,B,A)$ where $B = \theta(A,b,c,R) \cup \{b,c\}$
- (iv) $A \models \neg \phi(b, c, R]$ implies $A \models (\forall z) \neg \theta(z, b, c, R)$.

PROOF. By the compactness theorem and Claim 5D, there is an $n_3 < \omega$ such that $R \in R_{\psi}(A)$, $A \models \phi[b, c, R]$ implies $\langle b, c \rangle \in e_{n_3}(R, A)$.

Let $\theta(z,x,y,r)$ say " $\phi(x,y,r)$, $z \neq x$, $z \neq y$ and for some $n \leq n_3$ there are no z_1, \dots, z_{n-1} such that $\langle x, y \rangle \in e(r, \{x,y,z_1,\dots,z_{n-1}\})$, but there are z_1,\dots,z_n such that $\langle x,y \rangle \in e(r, \{x,y,z_1,\dots,z_n\})$, and $z=z_1$ ". As in the proof of Claim 4C for all $R \in R_{\psi}(A)$, $b,c \in A$, $\theta(A,b,c,R)$ is finite, and so clearly the claim holds.

CLAIM 5F. In the conclusion of Claim 5E we can add

(v) there is $n_4 < \omega$ such that for $R \in R_{\psi}(A)$

$$A \models (\exists^{\leq n_4} z) (\exists xy) \theta(z, x, y, R).$$

For this it suffices to prove Claim 5G (by applying Claim 5G twice we get Claim 5F).

CLAIM 5G. If Q_P is not interpretable by Q_{ψ} , and for any $R \in R_{\psi}(A)$, $A \models (\forall \bar{x})$ $(\forall y) (\exists^{\leq m_1} z) \theta(z, y, \bar{x}, R)$ and $\theta(z, y, \bar{x}, r) \rightarrow z \neq y$, then for some $m_2 < \omega$, for every $R \in R_{\psi}(A)$

$$A \models (\forall \bar{x}) (\exists^{\leq m_2} z) (\exists y) \theta(z, y, \bar{x}, R).$$

PROOF. If not, by the compactness theorem, there are A, $R \in R_{\psi}(A)$, $\bar{a} \in A$ such that

(1)
$$A \models (\forall y) (\exists^{\leq m_1} z) \ \theta(z, y, \bar{a}, R)$$

(2) for every finite $B \subseteq A$ there are $b \in A$, $c \in A - B$, $A \models \theta(c, b, \bar{a}, R)$.

Define by induction on $n, b_n \in A, c_n \in A - \{c_i : i < n\}$ such that $A \models \theta[c_n, b_n, \bar{a}, R]$.

By Ramsey's theorem [9] we can assume that the truth value of $A \models \theta[c_m, b_n, \bar{a}, R]$, $b_n = c_m$ depends only on whether m = n, m < n or m > n. Since, $A \models (\exists^{\leq m_1} z) \theta(z, b_n, \bar{a}, \bar{R})$ clearly $A \models \theta[c_m, b_n, \bar{a}, R]$ if m = n (reccal that the c_n 's are distinct); therefore, b_n 's are distinct. Also $b_n \neq c_m$ because (1) if n = m, this holds by the assumption on θ , (2) if n < m, then $c_1 = b_0 = c_2$, a contradiction, and (3) if n > m, $c_1 = b_3 = c_2$, a contradiction.

Also w.l.o.g. $b_n \neq \bar{a}_i$, $c_n \neq \bar{a}_i$, $\models \neg \theta[c_n, c_m, \bar{a}, R] \land \neg \theta(b_n, b_m, \bar{a}, R]$ for $n \neq m$ (otherwise omit finitely many $\langle c_i, b_i \rangle$'s). Let

$$B = \{b_n : n < \omega\} \cup \{c_n : n < \omega\}.$$

Now the formula $y = z \lor \theta(z, y, \bar{a}, R) \lor \theta(y, z, \bar{a}, R]$ defines on B a relation of Eq*(B), a contradiction. Thus Claim 5G, and hence Claim 5F are proved.

CLAIM 5H. If Q_P is not interpretable by Q_{ψ} , then for every A, $R \in R_{\psi}(A)$, $e^+(R,A) = \{\langle a,b \rangle : a,b \in A$, the permutation f(f(a) = b, f(b) = a, f(c) = c for $c \neq a,b$) is an automorphism of (A,R)} is an equivalence relation with finitely many equivalence classes.

PROOF. Define by induction on n, $1 \le n < \omega$, formulae

$$\phi_n(x, y, r)$$
, $\theta_n(z, r)$ such that

- 1) for any $R \in R_{\psi}(A)$, $\phi_n(x, y, R)$ is an equivalence relation with $\langle k_1(n) \rangle \langle \omega \rangle$ equivalence classes
 - 2) for any $R \in R_{\psi}(A)$, $|\theta_n(A, R)| \leq k_2(n) < \omega$
- 3) for any $R \in R_{\psi}(A)$, $a, b \in A$, $A \models \phi_n[a, b, R]$ implies $\langle a, b \rangle \in e(R, (B_n B_{n-1}) \cup \{a, b\}, A)$

4) for any $1 \le n \le m < \omega$, $\theta_n(A, R) \subseteq \theta_m(A, R)$ where $B_0 = \emptyset$, $B_n = \theta_n(A, R)$. For n = 1 the existence of ϕ_1 , θ_1 follows from Claims 5D, 5E, and 5F and the compactness theorem. (Take $\phi_1 = \phi$, $\theta_1 = (\exists xy)\theta(z, x, y, r)$.)

Suppose $\phi_n \theta_n$ are defined. Let $c_1, \dots, c_k [k = \sum_{l=1}^n k_2(l)]$ be individual constants, and replace $\psi(r)$ by

$$\psi(r) \wedge (\forall z) \left[\bigvee_{i=1}^{n} \theta_{i}(z,r) \equiv \bigvee_{l=1}^{k} z = c_{l} \right].$$

Now repeat the proof of Claims 5D, E and F (the change from r to r and c's is technical; just add more atomic formulae). Hence we get ϕ_{n+1} θ_{n+1} as we got ϕ_1 θ_1 . Clearly (1), (2) and (3) hold.

Now for any $R \in R_{\psi}(A)$ define

$$e' = \{ \langle a, b \rangle : (\forall n < \omega) A \models \phi_n[a, b, R] \}.$$

Clearly e' is an equivalence relation with $\leq 2^{\aleph_0}$ equivalence classes.

It is also clear that $e^+(R, A)$ is an equivalence relation. We shall now show that if a e'b, $a, b \notin \bigcup_n B_n$ and their e'-equivalence class is infinite, then $a e^+(R, A)b$.

$$\models \phi[a, b, c_1, \dots, c_m, r] \equiv \phi[a_1, b, c_1, \dots, c_m, r],$$

$$\models \phi[a_1,b,c_1,\cdots,c_m,r] \equiv \phi[a_1,a,c_1,\cdots,c_m,r] \text{ and also }$$

$$\models \phi[a_1,a,c_1,\cdots,c_m,r] \equiv \phi[b,a,c_1,\cdots,c_m,r].$$
 Combining we get the result.

PROOF OF LEMMA 5. From Claim 5H and the compactness theorem, it follows that if Q_p is not interpretable by Q_{ψ} then there is some $n_5 < \omega$ such that for any $A, R \in R_{\psi}(A), e^+(R, A)$ has $\leq n_5$ equivalence classes. Let us show that this implies that Q_{ψ} is interpretable by Q_M . This implies that for every $A, R \in R_{\psi}(A)$, there are sets B_1, \dots, B_{n_5} (the $e^+(R, A)$ equivalence classes) such that the truth value of $R[a_1, \dots, a_{n(\psi)}]$ ($a_i \in A$) depends only on the truth values of $a_i = a_j, a_i \in B_k$; hence there is a (quantifier free) formula ϕ such that

$$A \models (\forall \bar{x}) \ \big[R(\bar{x}) \equiv \phi(\bar{x}, B_1, \cdots, B_{n_*}) \big].$$

From the construction, the number of possible ϕ 's is finite, and let them be $\phi_1, \dots, \phi_{n_5}$. Let

$$\phi^* = \bigwedge_{i=1}^{\infty} \left[y_0 = y_i \to \phi_i(\bar{x}_1, X_1, \dots, X_{n_5}) \right]$$

 $(X_i$ -variables over sets).

Hence for every infinite A, and $R \in R_{\psi}(A)$ there are $c_0, \dots, c_{n_6}, B_1, \dots, B_{n_5}$ such that

$$A \models (\forall \bar{x}) \lceil R(\bar{x}) = \phi^*(\bar{x}, \bar{c}, B_1, \cdots) \rceil.$$

Thus the proof of Lemma 5 is complete.

Lemma 6. If Q_{ψ} is not interpretable by Q_P then Q_{II} is interpretable by Q_{ψ} .

PROOF. As Q_{ψ} is not interpretable by Q_P , it is obviously not interpretable by Q_M ; hence by Lemma 5, Q_P is interpretable by Q_{ψ} .

Definition 7.

- 1) A family of sequences of length n is pseudofinite if there is a finite set such that in every sequence of the family appears an element from the finite set.
- 2) A family F of sequences of length n from a model (A, \bar{R}) is $\phi(\bar{x}, \bar{y}, \bar{r})$ -minimal in (A, \bar{R}) $(l(\bar{x}) = n)$ if it is not pseudo-finite, but for any $\bar{a} \in A$, $\{\bar{b} \in F : A \models \phi[\bar{b}, \bar{a}, \bar{R}]\}$ is pseudo-finite or $\{\bar{b} \in F : A \models \neg \phi(\bar{b}, \bar{a}, \bar{R})\}$ is pseudo-finite.
 - 3) $\phi(x, \bar{a}, \bar{R})$ is algebraic (in (A, \bar{R})) if $|\phi(A, \bar{a}, \bar{R})| < \aleph_0$.
- 4) $\phi(\bar{x}, \bar{a}, \bar{R})$ is pseudo-algebraic (in (A, \bar{R})) if $\{\bar{b} \in A : A \models \phi [\bar{b}, \bar{a}, \bar{R}]\}$ is pseudo-finite.
- 5) $a(\bar{a})$ is (pseudo-) algebraic over B in (A, \bar{R}) if for some (pseudo-)algebraic $\phi(x, \bar{b}, \bar{R})$ ($\phi(\bar{x}, \bar{b}, \bar{R})$), $A \models \phi[a, \bar{b}, \bar{R}]$ ($A \models \phi[\bar{a}, \bar{b}, \bar{R}]$) and $\bar{b} \in B$.
 - 6) The type of \bar{b} over B in (A, \bar{R}) is $\{\phi(\bar{x}, \bar{c}, \bar{R}) : \bar{c} \in B, A \models \phi[\bar{b}, \bar{c}, \bar{R}]\}$.

CLAIM 6A. Q_{II} is interpretable by Q_{ψ} if there are $\phi(\bar{x}, \bar{y}, \bar{z}, \bar{r})$ $[l(\bar{x}) = l(\bar{y}) = n]$, $A, \bar{R} \in R_{\psi}(A), \bar{c} \in A, B \subseteq A$ such that $\phi(\bar{x}, \bar{y}, \bar{c}, \bar{R})$ defines over ${}^{n}B = \{\bar{b} : \bar{b} \in B, l(\bar{b}) = n\}$ an equivalence relation, with infinitely many non-pseudo-finite equivalence classes.

PROOF. For n = 1, we can show as in Claim 4A, Claim 5A that we can interpret the quantifier over equivalence relations. By Rabin [8], it then follows that we can interpret Q_{II} .

Now we shall reduce the case n > 1 to n = 1, using the interpretability of Q_P by Q_{ψ} .

Choose by induction on $\max\{i,j\}$ sequences $\bar{a}^{ij}i,j < \omega$ such that

- 1) $\bar{a}^{i,j} \in B$
- 2) $A \models \phi \lceil \bar{a}^{i,j}, \bar{a}^{l,k}, \bar{c}, \bar{R} \rceil$ iff i = l
- 3) for $\langle i,j \rangle \neq \langle l,k \rangle$, $\bar{a}^{i,j}$, $\bar{a}^{l,k}$ are disjoint, and $\bar{a}^{i,j}$, \bar{c} are disjoint.

For m=1,n, define f_m as the permutation of A (of order two) interchanging $\bar{a}_m^{i,j}$ with $\bar{a}_m^{i,j}$ for $i,j<\omega$, and taking any other $b\in A$ to itself.

Let
$$B^* = \{ \bar{a}_1^{i j} : i, j < \omega \}.$$

Now the formula

$$\phi^*(x, y, \bar{z}, \bar{R}, f_1, \dots, f_n) = \phi(f_1(x), f_2(x), \dots, f_n(x), f_1(y), f_2(y), \dots, f_n(y), \bar{c}, \bar{R})$$

defines on B^* an equivalence relation with infinitely many infinite equivalence classes. This proves Claim 6A.

CLAIM 6B. Q_{II} is interpretable by Q_{ψ} if there are $\phi(\bar{x}, \bar{y}, r)$, $A, R \in R_{\psi}(A)$ and $\bar{a}^n \in A(n < \omega)$, such that for every $n < \omega$, $\theta_n = \bigwedge_{m < n} \phi(\bar{x}, \bar{a}^m, R) \land \neg \phi(\bar{x}, \bar{a}^n, R)$ is not pseudo-algebraic.

PROOF. By the compactness theorem we can assume that each formula θ_n is satisfied by $> 2^{\aleph_0}$ pairwise disjoint sequences. Let

$$B = \{\bar{a}_i^m : m < \omega, 1 \le i \le l(\bar{a}^m)\}, \ e = \{\langle \bar{b}, \bar{c} \rangle : \bar{b}, \bar{c} \in A, \ l(\bar{b}) = l(\bar{c})\}$$
$$= l(\bar{x}), (\forall \bar{a} \in B) \ A \models \phi \lceil \bar{b}, \bar{a}, R \rceil \equiv \phi \lceil \bar{c}, \bar{a}, R \rceil \}.$$

Then e is an equivalence relation over ${}^{l(\bar{a}^m)}A$. The set of sequences which satisfies θ_n is split into at most 2^{\aleph_0} equivalence classes (as $|B| = \aleph_0$), so at least one of them contains $> 2^{\aleph_0}$ pairwise disjoint sequences, hence is not pseudo-finite. Clearly for $n \neq m$, a sequence satisfying θ_n and a sequence satisfying θ_m are not equivalent. Thus we get our result by Claim 6A.

CLAIM 6C. If Q_{II} is not interpretable by Q_{ψ} then for every $\phi(\bar{x}, \bar{y}, r)$ there are $m(\phi) < \omega$, and $\chi_{\phi,i}(\bar{x}, \bar{z}, r)$ $i = 1, \dots, m(\phi)$ such that

for any $A, R \in R_{\psi}(A)$ there is $\bar{c} \in A$ which satisfies

- 1) $A \models (\forall \bar{x}) \bigvee_{i=1}^{m(\phi)} \chi_{\phi,i}(\bar{x}, \bar{c}, R)$
- 2) $A \models \neg (\exists \bar{x}) [\chi_{\phi,i}(\bar{x},\bar{c},R) \land \chi_{\phi,j}(\bar{x},\bar{c},R)]$ for $i \neq j$
- 3) the sets $S_i = \{\bar{a}: A \models \chi_{\phi,i}[\bar{a},\bar{c},R]\}$ are $\phi(\bar{x},\bar{y},r)$ -minimal; moreover for some fixed $m_1(\phi) < \omega$, for no S_i and no $\bar{b} \in A$, do both $\{\bar{a} \in S_i: A \models \phi[\bar{a},\bar{b},R]\}$ and

 $\{\bar{a} \in S_i : A \models \neg \phi[\bar{a}, \bar{b}, R]\}$ contain $m_1(\phi)$ pairwise disjoint sequences (we call this property " $(\phi, m_1(\phi))$ -minimality").

PROOF. By Claim 6B and the compactness theorem, there is an $m_1(\phi) < \omega$ such that we cannot find $A, R \in R_{\psi}(A)$, sequences $\bar{a}^n \in A$ for $n < m_1(\phi)$, and a formula $\phi^* \in \{\phi(\bar{x}, \bar{y}, r), \neg \phi(\bar{x}, \bar{y}, r)\}$ such that for each $n < m_1(\phi), \land_{m < n} [\phi^*(\bar{x}, \bar{a}^m, R)]$ is satisfied by $\geq m_1(\phi)$ pairwise disjoint sequences.

Now let η denote a sequence of ones and zeros. Define by induction on l, sequences $\bar{a}_{\eta}l(\eta) \leq l$ and formulae $\chi_{\eta} = \chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R)$.

For l = 0, η the empty sequence, $\chi_n = (\forall x)(x = x)$.

Suppose we have made the definitions for l; let us do so for l+1. Let $l(\eta)=l$. If there is an $\bar{a}_{\eta} \in A$ such that both $\chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R) \wedge \phi(\bar{x}, \bar{a}_{\eta}, R), \chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R) \wedge \neg \phi(\bar{x}, \bar{a}_{\eta}, R)$ are satisfied by $\geq m_1(\phi)$ pairwise disjoint sequences, then choose such \bar{a}_{η} ; otherwise choose \bar{a}_{η} arbitrarily.

Then if $l(\eta) = l + 1$, define $\chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R)$ as follows: $\eta = \langle i(1), \dots, i(l+1) \rangle$; then if i(l+1) = 0,

$$\chi_{\eta}(\bar{x},\bar{b}_{\eta},R) = \chi_{\langle i(1),\, \ldots,\, i(l)\rangle}(\bar{x},\bar{b}_{\langle i(1),\, \ldots,\, i(l)\rangle},R) \wedge \phi(\bar{x},\bar{a}_{\langle i(1),\, \ldots,\, i(l)\rangle},R)$$

and if i(l+1) = 1, it is the same with $\neg \phi$ instead of ϕ .

By the definition of $m_1(\phi)$, if, e.g., $l(\eta) = 2m_1(\phi) + 2$, then $\chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R)$ is $(\phi, m_1(\phi))$ -minimal. Clearly the $\chi_{\eta}(\bar{x}, \bar{b}_{\eta}, R)$, $l(\eta) = 2m_1(\phi) + 2$ form a partition; and the choice of $\chi_{\eta}(\bar{x}, z, r)$ does not depend on the particular model. Thus Claim 6C is proved.

CLAIM 6D. Suppose Q_{II} is not interpretable by Q_{ψ} . If A is an infinite $R \in R_{\psi}(A)$, $B \subseteq A$, $\bar{a}, \bar{b} \in A$, and \bar{a} is pseudo-algebraic over $B \cup \{\cdots, \bar{b}_i, \cdots\}$ but not over B, then \bar{b} is pseudo-algebraic over $B \cup \{\cdots, \bar{a}_i, \cdots\}$.

PROOF. Suppose the conclusion fails. There are $\bar{c} \in B$, and $\phi(\bar{x}, \bar{y}, \bar{z}, r)$ such that $A \models \phi[\bar{a}, \bar{b}, \bar{c}, R]$, and $\phi(\bar{x}, \bar{b}, \bar{c}, R)$ is pseudo-algebraic. Say there do not exist m pairwise disjoint sequences in $\phi[A, \bar{b}, \bar{c}, R]$. Let $\theta(\bar{x}, \bar{y}, \bar{z}, R)$ say that $\phi(\bar{x}, \bar{y}, \bar{z}, R)$ and there do not exist m pairwise disjoint sequences in $\phi(A, \bar{y}, \bar{z}, R)$. Since $A \models \theta[\bar{a}, \bar{b}, \bar{c}, R]$, $\theta[\bar{a}, \bar{y}, \bar{c}, R]$ is not pseudo-algebraic. For each $n < \omega$, let $\chi_n(\bar{x}, \bar{z}, R)$ say that there are n disjoint sequences \bar{d} such that $\theta(\bar{x}, \bar{d}, \bar{z}, R)$ is satisfied. Thus $A \models \chi_n[\bar{a}, \bar{c}, R]$ for all n, and hence $\chi_n(\bar{x}, \bar{c}, R)$ is not pseudo-algebraic.

Now, by the compactness theorem, we can assume that there are \bar{a}^i , $\bar{b}^{i,j} \in A$ for $i,j < \omega$ such that

$$A \models \theta[\bar{a}^i, \bar{b}^{i,j}, \bar{c}, R]$$
 for all i, j ,

and \bar{a}^k , \bar{a}^l (likewise $\bar{b}^{i,k}$, $\bar{b}^{i,l}$) are disjoint for $k \neq l$. By rejecting some $\bar{b}^{i,j}$, we can assume that $\bar{b}^{i,j}$, $\bar{b}^{k,l}$ are disjoint unless $\langle i,j \rangle = \langle k,l \rangle$, and also that

$$A \models \theta \lceil \tilde{a}^i, \, \tilde{b}^{j \cdot k}, \, \tilde{c}, \, R \rceil \equiv \theta \lceil \tilde{a}^i, \, \tilde{b}^{j \cdot l}, \, \tilde{c}, \, R \rceil$$

when $i \le j$. Further, by Ramsey's theorem, we arrange that the truth value of $\theta[\bar{a}^i, \bar{b}^{j,k}, \bar{c}, R]$ for i < j is independent of i, j.

Now since there are no m pairwise disjoint sequences in $\theta[A, \bar{b}^{m,0}, \bar{c}, R]$, it follows that for all i, j, k, with $i \leq j$, $A \models \theta[\bar{a}, \bar{b}^{j,k}, \bar{c}, R]$ if and only if i = j. Thus we get a contradiction as in Claim 6B.

CLAIM 6E. If $\bar{a} = \langle \bar{a}_1, \dots, \bar{a}_n \rangle$ is pseudo-algebraic over $B \subseteq A$ in (A, R), then some a_i is algebraic over B in (A, R).

PROOF. Since \bar{a} is pseudo-algebraic over B, there is a pseudo-algebraic $\phi(\bar{x}, \bar{b}, R)$ $(\bar{b} \in B)$, $A \models \phi[\bar{a}, \bar{b}, R]$. Hence there is a finite set $C = \{c_1, \dots, c_n\}$ such that for any $\bar{a}^1 \in A$, $A \models \phi[\bar{a}^1, \bar{b}, R]$ implies $\{\bar{a}_1^1, \dots\}$ and C are not disjoint. Without loss of generality n is minimal. Let

$$\theta^{1}(z_{1}, \dots, z_{n}, \bar{y}, r) = (\forall \bar{x}) \left[\phi(\bar{x}, \bar{y}, r) \to \bigvee_{i,j} \bar{x}_{i} = z_{j} \right]$$

$$\theta^{2}(z, \bar{y}, r) = (\exists z_{2}, \dots, z_{n}) \theta^{1}(z, z_{2}, \dots, z_{n}, r).$$

Clearly for some i, $A \models \theta^2[\bar{a}_i, \bar{b}, R]$. As in Claim 4C we can show that $\theta^2(z, \bar{b}, R)$ is algebraic.

CLAIM 6F. Assume Q_{II} is not interpretable by Q_{ψ} . Let $R \in R_{\psi}(A)$, and for every formula ϕ , let $\chi_{\phi,i}$ $i = 1, \dots, m(\phi)$, \bar{c}^{ϕ} be as in Claim 6C. Let $C = \{\bar{c}_i^{\phi}; \phi, i\} \cup \{\text{elements algebraic over some } \bar{c}^{\phi}\}$.

If \bar{a} , $\bar{b} \in A$, $l(\bar{a}) = l(\bar{b}) = n$ and if the following conditions are met:

- 1) if $\bar{a}_{i_2}, \dots, \bar{a}_{i_l}$ are algebraic over $C \cup \{\bar{a}_{i_1}\}$, then $\langle \bar{a}_{i_1}, \dots, \bar{a}_{i_l} \rangle$, $\langle \bar{b}_{i_1}, \dots, \bar{b}_{i_l} \rangle$ realize the same type over C in (A, R),
- 2) as in (1), interchanging \tilde{a}, \tilde{b} , then \tilde{a}, \tilde{b} realize the same type over C.

Proof. We prove by induction on n.

For n = 1, (1) for l = 1 is the conclusion.

Suppose we have proved the claim for n; we shall prove it for n+1. Let $\phi = \phi(x, \bar{y}, \bar{z}, r)$ be a formula, $\bar{c} \in C$.

If each \bar{a}_i is algebraic over \bar{a}_1 we are finished. By renaming the \bar{a}_i 's we can

assume that $\bar{a}_2, \dots, \bar{a}_l$ are algebraic over $C \cup \{a_1\}$, but $a_{l+1}, \dots, \bar{a}_{n+1}$ are not; $l \leq n$. Let

$$\bar{a}^1 = \langle \bar{a}_1, \dots, \bar{a}_l \rangle, \ \bar{a}^2 = \langle \bar{a}_{l+1}, \dots, \bar{a}_{n+1} \rangle,
\bar{b}^1 = \langle \bar{b}_1, \dots, \bar{b}_l \rangle, \ \bar{b}^2 = \langle \bar{b}_{l+1}, \dots, \bar{b}_{n+1} \rangle.$$

By (1) and (2), $\bar{b}_2, \dots, \bar{b}_l$ are algebraic over \bar{b}_1 , but $b_{l+1}, \dots, \bar{b}_{n+1}$ are not. By Claim 6E, \bar{a}^2, \bar{b}^2 are not pseudo-algebraic over, respectively, $\bar{a}^1 \cup C$, $\bar{b}^1 \cup C$.

We must prove that for any $\bar{c} \in C$, $\phi(\bar{x}, \bar{y}, \bar{z}, r)$, $A \models \phi[\bar{a}^1, \bar{a}^2, \bar{c}, R] \equiv \phi[\bar{b}^1, \bar{b}^2, \bar{c}, R]$. By the induction hypothesis, \bar{a}^i , \bar{b}^i realize the same type over C. Now we apply the definition of \bar{c}^{ψ} for $\psi(\bar{y}, \bar{x}, \bar{z}, R) = \phi(\bar{x}, \bar{y}, \bar{z}, R)$ (see Claim 6C).

By Claim 6C (1) there is an *i* such that $A \models \chi_{\psi,i} [\bar{a}^2, \bar{c}^{\psi}, R]$.

By Claim 6C (2) one of

$$\chi_{\psi,i}(\bar{y},\bar{c}^{\psi},R) \wedge \phi(\bar{a}^1,\bar{y},\bar{c},R)$$
$$\chi_{\psi,i}(\bar{y},\bar{c}^{\psi},R) \wedge \neg \phi(\bar{a}^1,\bar{y},\bar{c},R)$$

(w.l.o.g. the second), is not satisfied by $\geq m_1(\psi)$ pairwise disjoint sequences. As \bar{a}^2 is not pseudo-algebraic over $\bar{a}^1 \cup C$, clearly

$$A \models \phi[\bar{a}^1, \bar{a}^2, \bar{c}, R].$$

Since \bar{a}^2 and \bar{b}^2 have the same type over C, $A \models \chi_{\psi,i}[\bar{b}^2, \bar{c}^{\psi}, R]$, and since \bar{a}^1, \bar{b}^1 have the same type over C, $\chi_{\psi,i}[\bar{y}, \bar{c}^{\psi}, R] \land \neg \phi(\bar{b}^1, \bar{y}, \bar{c}^{\psi}, R)$ is not satisfied by $\geq m_1(\psi)$ pairwise disjoint sequences. Hence the above reasoning gives that

$$A \models \phi[\bar{b}^1, \bar{b}^2, \bar{c}, R]$$

which completes the proof.

CLAIM 6G. Suppose Q_{II} cannot be interpreted by Q_{ψ} . Then there are $n_0, n_1 < \omega, \ \phi(x, y, \bar{z}, r), \ \chi_i(\bar{x}^i, \bar{z}, r) \ i < n_1 \ l(\bar{x}^i) = n^i \ such that \ (\exists^{\leq n_0} x) \ \phi(x, y, \bar{z}, r)$ and $\phi(x, x, \bar{z}, r)$ and $(\exists^{\leq n_1} y)\phi(x, y, \bar{z}, r)$ hold and for any $A, R \in R_{\psi}(A)$ there is a $\bar{c} \in A$, such that if $\bar{a}, \bar{b} \in A$ $(l\bar{a}) = l(\bar{b}) = n(\psi)$ and if the following conditions are met

- 1) if $\models \phi[\bar{a}_{i_1}, \bar{a}_{i_1}, \bar{c}, R]$ for $l = 2, \dots, k$ and $n^i = k$ then $A \models \chi_i[\bar{a}_{i_1}, \dots, \bar{a}_{i_k}, \bar{c}, R]$ $\equiv \chi_i[\bar{b}_{i_1}, \dots, \bar{b}_{i_k}, \bar{c}, R],$
 - 2) as in (1), interchanging \bar{a} and \bar{b} , then $A \models r[\bar{a}] \equiv r[\bar{b}]$.

PROOF. It follows from Claim 6D and 6F and the compactness theorem. (Note that in Claim 6F, we can choose any \bar{c}^{ϕ} , as long as it satisfies a first-order condition which expresses (1), (2), and (3) of Claim 6C, when we are interested in the formula $r(\bar{x})$ only. We can have one ϕ because the disjunction of algebraic formulae is algebraic and if a is algebraic over B, then for some $n, \phi, \bar{b} \in B$, $A \models (\exists^{\leq n} x) \phi(x, \bar{b}, R)$; hence a satisfies $\theta^1(x, \bar{b}, R) = (\exists^{\leq n} y) \theta(y, \bar{b}, R) \land \theta(x, \bar{b}, R)$, and $(\exists^{\leq n} x) \theta^1(x, \bar{b}, R)$ holds.)

PROOF OF LEMMA 6. Assume Q_{II} cannot be interpreted by Q_{ψ} , and we shall interpret Q_{ψ} by Q_{P} . We use the results and notation of Claim 6G.

Call a, b n-connected (in (A, R), $R \in R_{\psi}(A)$, \bar{c} as in Claim 6G if there are $a = c^0$, $c^2, \dots, c^n = b$ such that $A \models \phi[c^i, c^{i+1}, \bar{c}, R] \lor \phi[c^{i+1}, c^i, \bar{c}, R]$ for $1 \le i < n$. By the remark above, the number of b's n-connected to a is $\le k(n) < \omega(k(n))$ depends only on ϕ , ψ and n).

Now choose inductively $A_n \subseteq A$, $n \ge 1$ such that A_n is a maximal subset of $A - \bigcup_{i < n} A_i$ with no two 2-connected elements. For $n \ge k(2) + 2$, A_n is empty, because if $a \in A_n$, then by the definition of A_i , (i < n) there is a $b_i \in A_i$ such that a, b_i are 2-connected. So > k(2) elements are two-connected to A, a contradiction. Now for any $a \ne b \in A_n$, $\phi(A, a, \bar{c}, R)$, $\phi(A, b, \bar{c}, R)$ are disjoint (because if c is in the intersection, then c, a and c, b are 1-connected, hence a, b are 2-connected).

Now it is clear how to define r by permutations and sets. By dividing the A_i 's according to $|\phi(A,a,\bar{c},R)|$, we get $A=\bigcup_{i\leq m}A_i$, $a\neq b\in A_i$ implies $\phi(A,a,\bar{c},R)\cap\phi(A,b,\bar{c},R)=\emptyset$, and $|\phi(A,a,\bar{c},R)|=m(i)$. For each i choose permutations of order two $f_1^i,\cdots,f_{m(i)}^i$ such that

$$\phi(A, a, \bar{c}, R) = \{f_i^i(a) : 1 \le j \le m(i)\}.$$

In view of Claim 6G, we thus represent $R[\in R_{\psi}(A)]$ by the permutations f_i^i , the sets A_i , and the additional sets

$$A_{i,k,l_1...} = \{a \in A_i : A \models \chi_k[f_{l_1}^i(a), \dots, R]\}.$$

In fact there are only finitely many such possible representations, so by adding a sequence of elements, we can encode, by equalities, the proper case.

REFERENCES

- 1. Bell, J. L. and A. B. Slomson, Models and Ultraproducts, North Holland, 1969.
- 2. P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 44 (1969), 467-479.

- 3. Ju. L. Ershov, Undecidability of theories of symmetric and simple finite groups, Dokl. Akad. Nauk SSSR 158, (1964) 777-779.
- 4. Ju. L. Ershov. New examples of undecidability of theories, Algebra i Logika 5 (1966), 37-47.
- 5. R. McKenzie, On elementary types of symmetric groups, Algebra Universalis 1 (1971), 13-20
- 6. M. D. Morley and R. L. Vaught, *Homogeneous universal models*, Math. Scand. 11 (1962), 37-57.
- 7. A. G. Pinus, On elementary definability of symmetric group and lattices of equivalences, Algebra Universalis, to appear.
- 8. M. O. Rabin, A simple method for undecidability proofs, Proc. 1964 Int. Congress for Logic, North Holland, 1965, pp. 58-68.
 - 9. F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.
- 10. S. Shelah, There are just four possible second-order quantifiers and on permutation groups, Notices Amer. Math. Soc. 19 (1972), A-717.
- 11. S. Shelah, First order theory of permutations groups, Israel J. Math. 14 (1973), 149-162; and Errata to "First order theory of permutations groups", Israel J. Math. 15 (in press).

Institute of Mathematics
THE Hebrew University of Jerusalem
Jerusalem, Israel